
Available online at www.sciencedirect.com

F
m
i
t
m
p
©
r

K

o
t

v

ScienceDirect

Mathematics and Computers in Simulation 203 (2023) 518–537
www.elsevier.com/locate/matcom

Original articles

A new splitting method for systems of monotone inclusions in Hilbert
spaces

Yunda Dong
School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, PR China

Received 28 July 2021; received in revised form 29 April 2022; accepted 23 June 2022
Available online 30 June 2022

Abstract

In this article, we consider the problem of finding a zero of systems of monotone inclusions in real Hilbert spaces.
urthermore, each monotone inclusion consists of three operators and the third is linearly composed. We suggest a splitting
ethod for solving them: At each iteration, for each monotone inclusion, it mainly needs computations of three resolvents for

ndividual operator. This method can be viewed as a powerful extension of the classical Douglas–Rachford splitting. Under
he weakest possible assumptions, by introducing and using the characteristic operator, we analyze its weak convergence. The

ost striking feature is that it merely requires each scaling factor for individual operator be positive. Numerical results indicate
ractical usefulness of this method, together with its special cases, in solving our test problems of separable structure.
2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

eserved.

eywords: Monotone inclusion; Characteristic operator; Splitting methods; Weak convergence; Scaling factor

1. Introduction

For i = 1, . . . , n, let Hi and G be real infinite-dimensional Hilbert spaces. In this article, we are mainly concerned
with the following system of monotone inclusions

0 ∈ Āi (xi)+ Ai (xi)+ Q∗i B
(∑n

i=1 Qi xi − q
)
, i = 1, . . . , n, (1)

where Āi , Ai : Hi ⇒ Hi are maximal monotone operators, B : G ⇒ G is maximal monotone operator, and
each Qi : Hi → G is nonzero bounded linear operator with its adjoint operator Q∗i , and q ∈ G is a vector. The
problem above models a wide range of problems arising from definite linear systems, linear/quadratic programming,
complementarity problems, variational inequality problems and optimal control [19].

For an important case

0 ∈ Ā(x)+ A(x), (2)

ne may resort to the Douglas–Rachford splitting method (DR method for short) of Lions and Mercier [13]; see
he Refs. [2,3,5,7,10,20] and Algorithm 3.

In the n = 1 case, the author discussed how to solve semi-definite programming by DR method and a modified
ersion in a 2010 conference report, which is an early draft of [2].

E-mail address: ydong@zzu.edu.cn.
https://doi.org/10.1016/j.matcom.2022.06.023
0378-4754/© 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.

http://www.elsevier.com/locate/matcom
https://doi.org/10.1016/j.matcom.2022.06.023
http://www.elsevier.com/locate/matcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2022.06.023&domain=pdf
mailto:ydong@zzu.edu.cn
https://doi.org/10.1016/j.matcom.2022.06.023

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

c
T
m

g
b
c
b

s

b

w
i

D
f

E
∂

t

D

m

In general n case, He and Han [9] considered a class of separable convex minimization problems with linear
onstraints in Euclidean spaces, which is shown to be a special case of (1) below, and proposed an iterative scheme.
heir proposed method contains the ingredient of the DR splitting, and at each iteration it merely needs to solve
uch easier subproblems.
Inspired by these two works, we in this article consider how to further apply the DR splitting to solving more

eneral problem (1) above. As a result, we suggest a new splitting method. Under the weakest possible assumptions,
y introducing and using the characteristic operator (see Lemma 1 below for more details), we analyze its weak
onvergence. One of the most striking features is that it merely requires each scaling factor for individual operator
e positive.

For our suggested splitting method, it just reduces to the classical Douglas–Rachford splitting, when applied to
olving the two-operator monotone inclusion (2) above.

Interestingly, in a very special case of B being the sub-differential of the indicator function of the singleton set
{0} (and others), our suggested splitting method coincides with an equivalent version of the algorithm proposed by
He and Han [9] . Yet, even in this case, our way of choosing the parameter involved in (37) is a new idea. It is
given by (38) and essentially different from theirs.

Our suggested splitting method is reminiscent of an extended splitting method of [4, Algorithm 3.1], which is
best suited for solving

0 ∈ C(x)+ A(x)+ Q∗B (Qx − q) , (3)

corresponding to (1) with n = 1 and Ā := C being further inverse strongly monotone. In contrast, its novelties
include: (i) There is no need to evaluate the constant with respect to inverse strong monotonicity; (ii) its scope of
applications is much wider and it can solve all four test problems whereas the method of [4, Algorithm 3.1] fails
to do so; see Section 7 for more details.

For our suggested splitting method, we also did rudimentary experiments to confirm that it, together with its
special cases, is easily implementable and practically efficient for our test problems.

2. Preliminaries

In this section, we first give some basic definitions and then provide some auxiliary results for later use. Moreover,
we formally state general systems of monotone inclusions in real Hilbert spaces under consideration.

Let Q : H→ G be nonzero bounded linear operator with its adjoint operator Q∗. Then its norm ∥Q∥ is given
y

∥Q∥ := max
{√
⟨u, Q∗Qu⟩ : ∥u∥ = 1, u ∈ H

}
,

here ⟨·, ·⟩ stands for usual inner product. If in finite-dimensional spaces, then Q becomes an m-by-n matrix. Thus,
t is well-known that ∥Q∥2

≤ ∥Q∥1 · ∥Q∥∞, where

∥Q∥1 := max
j=1,...,n

∑m
i=1|qi j |, ∥Q∥∞ := max

i=1,...,m

∑n
j=1|qi j |.

efinition 1. Let H be a real Hilbert space. Let f : H→ (−∞,+∞] be a closed proper convex function. Then
or any given x ∈ H the sub-differential of f at x is defined by

∂ f (x) := {s ∈ H : f (y)− f (x) ≥ ⟨s, y − x⟩, ∀y ∈ H}.

ach element s is called a sub-gradient of f at x . Moreover, if f is further continuously differentiable, then
f (x) = {∇ f (x)}, where ∇ f (x) is the gradient of f at x .

To concisely give the following definition, we agree on that the notation (x, a) ∈ A and x ∈ H, a ∈ A(x) have
he same meaning.

efinition 2. Let A : H ⇒ H be an operator. It is called monotone iff

⟨x − x ′, a − a′⟩ ≥ 0, ∀(x, a) ∈ A, ∀(x ′, a′) ∈ A;

aximal monotone iff it is monotone and for given x̂ ∈ H and â ∈ H the following implication relation holds
⟨x − x̂, a − â⟩ ≥ 0, ∀(x, a) ∈ A ⇒ (x̂, â) ∈ A.

519

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

D

A
e

f

t
r

L

m

P
m
f

3

Definition 3. A single-valued operator A : H→ H is called Lipschitz continuous with modulus κ > 0 if

∥A(x)− A(y)∥ ≤ κ ∥x − y∥

holds for all x, y ∈ H.

efinition 4. Let C : H→ H be an operator. C is called inverse strongly monotone if there exists some c > 0
such that

⟨x − y, C(x)− C(y)⟩ ≥ c∥C(x)− C(y)∥2, ∀x, y ∈ H.

It is well known that the sub-differential of any closed, proper and convex function in a real Hilbert space is
maximal monotone as well. An important instance is the indicator function δC of a convex subset C in a real Hilbert
space

δC(x) :=
{

0, if x ∈ C,

+∞, if x /∈ C.

The closedness of δC is equivalent to the closedness of C . Thus, ∂δC to C is maximal monotone when C is closed
convex. Furthermore, the inverting operation of I + µ∂δC equals the usual projection PC onto the set C for any
given positive number µ. In addition, if we set Rn

+
:= {x ∈ Rn

: x ≥ 0}, then PRn
+

(x) = max{0, x}, which is of
component-wise maximum.

For any given maximal monotone operator A : H ⇒ H, its effective domain domA is defined by domA := {x ∈
H : A(x) ̸= ∅}. A related property is that if x ∈ domA then the set A(x) must be a nonempty closed convex set.

fundamental property is that, as proved by Minty [16], for any given positive number α > 0 and x̂ ∈ H, there
xists a unique x ∈ H such that (α I + A)(x) ∋ x̂ or (I + αA)(x) ∋ x̂ .

For any given maximal monotone operator A : H ⇒ H, the basic iterative procedure of finding its zeros is the
ollowing proximal point algorithm [14,19]: Choose an initial point x0

∈ H, and solve the monotone inclusion

(I + µk A)(x) ∋ xk, k = 0, 1, . . .

o get the new iterate xk+1, where the proximal parameter µk > 0 can vary from iteration to iteration. For very
ecent discussions, we refer to [3,10,15,20] and the references cited therein.

Denote

x :=

⎛⎜⎝x1
...

xn

⎞⎟⎠ , a :=

⎛⎜⎝a1
...

an

⎞⎟⎠ , A :=

⎛⎜⎝A1
. . .

An

⎞⎟⎠ .

emma 1. For systems of monotone inclusions (1), we introduce the dual variable u ∈ G. Then

T (x, a, u)

:=

⎛⎝ Ā
A−1

B−1

⎞⎠ ⎛⎝x
a
u

⎞⎠+
⎛⎝ 0 I Q∗

−I 0 0
−Q 0 0

⎞⎠ ⎛⎝x
a
u

⎞⎠+
⎛⎝0

0
q

⎞⎠ (4)

ust be maximal monotone.

roof. Note that Ā, A and B are maximal monotone. Thus, the first operator on the right-hand side is maximal
onotone. Meanwhile, the linearity of Q means that the second is also maximal monotone [16]. Maximality of T

ollows from [18]. □

In this article, such T is called the characteristic operator or eigenoperator with respect to the problem (1) above.

. Main results

In this section, we describe our suggested splitting method for systems of monotone inclusions (1) in details.
The method’s design is based on the following
520

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

w

w
(

b

O

w
o

F
i

t
fi
m

t

w

W
w

a

Assumption 1. For system of monotone inclusions (1), we assume that there exist x∗1 ∈ H1, ...,x∗n ∈ Hn , x∗n+1 ∈ G,
u∗ ∈ G such that they solve

0 ∈ Āi (xi)+ Ai (xi)+ Q∗i u, i = 1, . . . , n, (5)
0 ∈ B(xn+1)− u, (6)

0 =
∑n

i=1 Qi xi − q − xn+1. (7)

Furthermore, ∅ ̸= dom Āi ⊆ domAi for i = 1, . . . , n, ∅ ̸= domB.

First of all, we would like to explain Assumption 1 a bit. For example, we consider

min f̄ (x)+ f (x)+ g(Qx − q),

here f̄ , f : Rn
→ R, g : Rm

→ R are closed, proper convex functions, Q is an m × n matrix and q ∈ Rm . If
there exists an x such that

x ∈ ri dom f̄ ∩ ri dom f, Qx − q ∈ ri domg, (8)

then its optimality condition is

0 ∈ ∂ f̄ (x)+ ∂ f (x)+ QT ∂g(Qx − q),

here ri stands for the relative interior; see [17] for more details. If g is taken to be the indicator function δ{0}, then
8) reduces to

x ∈ ri dom f̄ ∩ ri dom f, Qx − q = 0 (9)

ecause the set ri domg becomes {0}, and we further have

0 ∈ ∂ f̄ (x)+ ∂ f (x)+ QT ∂δ{0}(Qx − q).

f course, we may replace (9) by

x ∈ int dom f̄ ∩ int dom f, Qx − q = 0, (10)

here int stands for the interior. This is stronger but more convenient, and it suffices to cover optimality conditions
f the first, second and fourth test problems.

Below we discuss how to use these conditions (5), (6) and (7) to design an iterative scheme for solving them.
or known xk

i ∈ Hi , ak
i ∈ Ai (xk

i), i = 1, . . . , n, xk
n+1 ∈ G, uk

∈ G. We first choose β > 0 and update the dual
terate by

ūk
= uk

− (xk
n+1 −

∑n
i=1 Qi xk

i + q)/β

o get the intermediate point ūk . Such an idea, at least in the setting of the Douglas–Rachford splitting method,
rst appeared in the aforementioned 2010 conference report. It plays a critical role in designing and analyzing the
ethod. Then, we compute

(αi I + Āi)(x̄k
i) ∋ αi xk

i − ak
i − Q∗i ūk, ak

i ∈ Ai (xk
i),

(αn+1 I + B)(x̄k
n+1) ∋ αn+1xk

n+1 + ūk,

o get the intermediate points x̄k
i and x̄k

n+1.
Denote

w :=

⎛⎜⎜⎜⎝
α1x1 + a1

...

αn+1xn+1 + an+1
u

⎞⎟⎟⎟⎠ , d :=

⎛⎜⎜⎜⎝
x1 − x̄1

...

xn+1 − x̄n+1

−
∑n+1

i=1 Qi x̄i + q

⎞⎟⎟⎟⎠ , (11)

here

an+1 := 0, Qn+1 := −I. (12)

e can prove that, if β is properly chosen, then the following desired inequality holds ⟨wk
− w∗, dk

⟩ > 0, where
∗ corresponds to the primal–dual solution. This indicates that −dk can provide a descent direction of ∥w−w∗∥2

k
t w = w . So, it is not difficult to get the following Algorithm 1.

521

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

a

a

N

(

Algorithm 1. Our suggested splitting algorithm

Step 0. For i = 1, . . . , n, choose x0
i ∈ Hi , a0

i ∈ Ai (x0
i), x0

n+1 ∈ G, u0
∈ G. For i = 1, . . . , n + 1, choose αi > 0

and θ ∈ (0, 2). Set k := 0.
Step 1. Choose β satisfying

β >
∑n

i=1∥Qi∥
2/(4αi)+ 1/(4αn+1). (13)

For xk
i ∈ Hi , ak

i ∈ Ai (xk
i), i = 1, . . . , n, xk

n+1 ∈ G, uk
∈ G. Compute

ūk
= uk

− (xk
n+1 −

∑n
i=1 Qi xk

i + q)/β, (14)

(αi I + Āi)(x̄k
i) ∋ αi xk

i − ak
i − Q∗i ūk, (15)

(αn+1 I + B)(x̄k
n+1) ∋ αn+1xk

n+1 + ūk . (16)

If some stopping criterion is met, then stop. Otherwise, compute

φk :=
∑n+1

i=1 αi∥xk
i − x̄k

i ∥
2
+ ⟨x̄k

n+1 −
∑n

i=1 Qi x̄k
i + q, uk

− ūk
⟩,

ϕk :=
∑n+1

i=1 ∥x
k
i − x̄k

i ∥
2
+ ∥x̄k

n+1 −
∑n

i=1 Qi x̄k
i + q∥2,

γk :=θφk/ϕk . (17)

Step 2. For i = 1, . . . , n, compute in order

(αi I + Ai)(xk+1
i) ∋ αi xk

i + ak
i − γk(xk

i − x̄k
i), (18)

αn+1xk+1
n+1 = αn+1xk

n+1 − γk(xk
n+1 − x̄k

n+1), (19)

uk+1
= uk

− γk(x̄k
n+1 −

∑n
i=1 Qi x̄k

i + q),

ak+1
i = αi (xk

i − xk+1
i)+ ak

i − γk(xk
i − x̄k

i). (20)

Set k := k + 1.

If it is not easy to evaluate ∥Qi∥
2 in practice, then we may turn to consider replacing it with ∥Q∥1 · ∥Q∥∞ as

n alternative. In practical implementations, we usually calculate

∆ :=
∑n

i=1∥Qi∥1∥Qi∥∞/(4αi)+ 1/(4αn+1),

∆′ := min{∥Q1∥1∥Q1∥∞/(4α1), . . . , ∥Qn∥1∥Qn∥∞/(4αn), 1/(4αn+1)}

nd then we may choose

β = κ ∆+ 10−9∆′, κ ≥ 1. (21)

In Algorithm 1, there are sub-problems (cf. (15) and (18)) of the following type

(α I + A)(x) ∋ w.

ow we discuss how to solve it. (i) If A is further linear, then we may use Matlab solver via

x = (α I + A) \ w. (22)

ii) If A := ∇ f is the gradient of some continuously differentiable convex function f , then we may resort to
quasi-Newton method with novel conditions using gradient only to locate steplength; see [22, Sect. 5.3]. (iii) If
A := F is continuously differentiable, then we may use some Newton-type method to solve this sub-problem. In
(15), there are ak

i ∈ Ai (xk
i), i = 1, . . . , n. If k = 0, then each a0

i is chosen from the set Ai (x0
i), as stated above. If

k ≥ 0, then we shall make use of (20) to calculate each ak+1
i , and the computational cost is tiny.

In Algorithm 1, there is also sub-problem (16) of the following type

(α I + B)(y) ∋ p.

For (16), if B is taken to be the differential of the indictor function of some closed convex set C, then it becomes
k k k
x̄n+1 = PC(αn+1xn+1 + ū).

522

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

β

t

w

P

w

a

Of course, if C is taken to be Rn
+
:= {x ∈ Rn

: x ≥ 0}, then it further reduces to

x̄k
n+1 = max

{
0, αn+1xk

n+1 + ūk} ,

where 0 is n-dimensional zero vector. In particular, in the case of C = {0}, we always have x̄k
n+1 = 0.

4. Weak convergence

In this section, we analyze convergence properties of the primal sequence and the dual sequence generated by
Algorithm 1. Under the weakest possible assumptions, we prove the former’s weak convergence to a solution of
the problem (1).

To simplify the proof of our main theorem, we introduce the following lemma, which is new and extends a result
in the proof of [12] from n = 1 to general cases.

Lemma 2. For i = 1, . . . , n, let Qi : Hi → G be nonzero bounded linear operators, and let αi > 0. If
i > ∥Qi∥

2/(4αi), then the following∑n
i=1

(
αi∥xi∥

2
+ ⟨Qi xi , u⟩ + βi∥u∥2)

≥
1
2
∑n

i=1

(
αi + nβi −

√
n∥Qi∥

2 + (αi − nβi)2
) (
∥xi∥

2
+ n−1

∥u∥2)
holds for all xi ∈ Hi and all u ∈ G.

Very recently, such a nice result was used in [3,6].

Lemma 3. Consider any maximal monotone operator T : H→ H. Assume that the sequence {wk
} in H converges

weakly to w, and the sequence {sk
} on domT converges strongly to s. If T (wk) ∋ sk for all k, then the relation

T (w) ∋ s must hold.

Theorem 1. Let {xk
i }(i = 1, . . . , n + 1), {uk

} be the sequences generated by Algorithm 1. If Assumption 1 holds
and β :=

∑n+1
i=1 βi and

βi >
∥Qi∥

2

4αi
, i = 1, . . . , n, βn+1 >

1
4αn+1

, (23)

hen there exists some positive number γ̂ such that

∥wk+1
− w∗∥2

≤ ∥wk
− w∗∥2

− γ̂
(∑n+1

i=1 ∥x
k
i − x̄k

i ∥
2
+ ∥uk

− ūk
∥

2
)

, (24)

here w is defined in (11).

roof. For i = 1, . . . , n, it follows from (15) that

Āi (x̄k
i) ∋ αi (xk

i − x̄k
i)− ak

i − Q∗i ūk,

hich, together with (5)

Āi (x∗i) ∋ −a∗i − Q∗i u∗,

nd monotonicity of each Āi , imply

0 ≤ ⟨x̄k
i − x∗i , αi (xk

i − x̄k
i)− (ak

i − a∗i)− Q∗i (ūk
− u∗)⟩

= ⟨x̄k
i − x∗i , αi (xk

i − x̄k
i)− (ak

i − a∗i)⟩

− ⟨x̄k
i − x∗i , Q∗i (ūk

− u∗)⟩

= ⟨xk
i − x∗i − (xk

i − x̄k
i), αi (xk

i − x̄k
i)− (ak

i − a∗i)⟩

− ⟨x̄k
i − x∗i , Q∗i (ūk

− u∗)⟩.
523

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

C

w

n

w

w

Rearranging all terms yields

⟨αi xk
i + ak

i − (αi x∗i + a∗i), xk
i − x̄k

i ⟩ − ⟨Qi (x̄k
i − x∗i), ūk

− u∗⟩

≥ αi∥xk
i − x̄k

i ∥
2
+ ⟨xk

i − x∗i , ak
i − a∗i ⟩

≥ αi∥xk
i − x̄k

i ∥
2, (25)

where the last inequality follows from monotonicity of each Ai .
It follows from (16) that

B(x̄k
n+1) ∋ αn+1(xk

n+1 − x̄k
n+1)+ ūk,

which, together with (6)

B(x∗n+1) ∋ u∗,

and monotonicity of B , imply

0 ≤ ⟨x̄k
n+1 − x∗n+1, αn+1(xk

n+1 − x̄k
n+1)+ ūk

− u∗⟩

= ⟨x̄k
n+1 − x∗n+1, αn+1(xk

n+1 − x̄k
n+1)⟩

+ ⟨x̄k
n+1 − x∗n+1, ūk

− u∗⟩

= ⟨xk
n+1 − x∗n+1 − (xk

n+1 − x̄k
n+1), αn+1(xk

n+1 − x̄k
n+1)⟩

+ ⟨x̄k
n+1 − x∗n+1, ūk

− u∗⟩.

Rearranging all terms yields

⟨xk
n+1 − x∗n+1, αn+1(xk

n+1 − x̄k
n+1)⟩ + ⟨x̄k

n+1 − x∗n+1, ūk
− u∗⟩

≥ αn+1∥xk
n+1 − x̄k

n+1∥
2.

ombining this with (25) yields∑n
i=1⟨αi xk

i + ak
i − (αi x∗i + a∗i), xk

i − x̄k
i ⟩

+ ⟨xk
n+1 − x∗n+1, αn+1(xk

n+1 − x̄k
n+1)⟩ −

∑n+1
i=1 ⟨Qi (x̄k

i − x∗i), ūk
− u∗⟩

≥
∑n+1

i=1 αi∥xk
i − x̄k

i ∥
2,

hich, together with
∑n+1

i=1 Qi x∗i = q (see (7) and (12)), implies∑n
i=1⟨αi xk

i + ak
i − (αi x∗i + a∗i), xk

i − x̄k
i ⟩

+ ⟨xk
n+1 − x∗n+1, αn+1(xk

n+1 − x̄k
n+1)⟩ − ⟨

∑n+1
i=1 Qi x̄k

i − q, ūk
− u∗⟩

≥
∑n+1

i=1 αi∥xk
i − x̄k

i ∥
2,

amely ∑n
i=1⟨αi xk

i + ak
i − (αi x∗i + a∗i), xk

i − x̄k
i ⟩

+ ⟨uk
− u∗, −

∑n+1
i=1 Qi x̄k

i + q⟩ + ⟨αn+1(xk
n+1 − x∗n+1), xk

n+1 − x̄k
n+1⟩

≥
∑n+1

i=1 αi∥xk
i − x̄k

i ∥
2
− ⟨

∑n+1
i=1 Qi x̄k

i − q, uk
− ūk
⟩,

hich can be rewritten as

⟨wk
− w∗, dk

⟩ ≥ φk, (26)

here w and d are defined in (11).
On the other hand, by (19) and (26), we get

∥wk+1
− w∗∥2

k ∗ k 2

= ∥w − w − γkd ∥

524

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

a

a

T

C

A
w

P

= ∥wk
− w∗∥2

− 2γk⟨w
k
− w∗, dk

⟩ + γ 2
k ∥d

k
∥

2

= ∥wk
− w∗∥2

− 2γk⟨w
k
− w∗, dk

⟩ + γ 2
k ϕk

≤ ∥wk
− w∗∥2

− 2γkφk + γ 2
k ϕk,

which, together with (17), implies

∥wk+1
− w∗∥2

≤ ∥wk
− w∗∥2

− (2− θ)γkφk . (27)

Since

x̄k
n+1 −

∑n
i=1 Qi x̄k

i + q

= xk
n+1 −

∑n
i=1 Qi xk

i + q + x̄k
n+1 − xk

n+1 +
∑n

i=1 Qi (xk
i − x̄k

i)

= β(uk
− ūk)+ x̄k

n+1 − xk
n+1 +

∑n
i=1 Qi (xk

i − x̄k
i) (28)

nd β :=
∑n+1

i=1 βi (see Theorem 1), it follows from Lemma 2 that

φk

=
∑n+1

i=1 αi∥xk
i − x̄k

i ∥
2
+ β∥uk

− ūk
∥

2
+

∑n+1
i=1 ⟨Qi (xk

i − x̄k
i), uk

− ūk
⟩

=
∑n+1

i=1

(
αi∥xk

i − x̄k
i ∥

2
+ ⟨Qi (xk

i − x̄k
i), uk

− ūk
⟩
)
+

∑n+1
i=1 βi∥uk

− ūk
∥

2

≥
1
2
∑n+1

i=1

(
∥xk

i − x̄k
i ∥

2
+ (n + 1)−1

∥uk
− ūk
∥

2)(
αi + (n + 1)βi −

√
(n + 1)∥Qi∥

2 + (αi − (n + 1)βi)2
)

,

nd the conditions (23) indicate that each
1
2

(
αi + (n + 1)βi −

√
(n + 1)∥Qi∥

2 + (αi − (n + 1)βi)2
)

must be positive. Let ρ be their minimum. Thus, we further get

φk ≥ ρ
(∑n+1

i=1 ∥x
k
i − x̄k

i ∥
2
+ ∥uk

− ūk
∥

2
)

. (29)

Meanwhile, we get

ϕk

=
∑n+1

i=1 ∥x
k
i − x̄k

i ∥
2
+ ∥x̄k

n+1 −
∑n

i=1 Qi x̄k
i + q∥2

=
∑n+1

i=1 ∥x
k
i − x̄k

i ∥
2
+ ∥β(uk

− ūk)+
∑n+1

i=1 Qi (xk
i − x̄k

i)∥2

≤
∑n+1

i=1 ∥x
k
i − x̄k

i ∥
2
+

(
β2
+

∑n+1
i=1 ∥Qi∥

2) (
∥uk
− ūk
∥

2
+

∑n+1
i=1 ∥x

k
i − x̄k

i ∥
2)

≤
(
1+ β2

+
∑n+1

i=1 ∥Qi∥
2) (∑n+1

i=1 ∥x
k
i − x̄k

i ∥
2
+ ∥uk

− ūk
∥

2) .

hus, we can conclude that

γk = θφk/ϕk ≥
θρ

1+ β2 +
∑n+1

i=1 ∥Qi∥
2

> 0. (30)

ombining this with (27) and (29) yields the desired result. □

Note that, the relation (30) tells us that the sequence {γk} has a positive lower bound, which is a desirable
property and is beneficial to numerical stability.

Theorem 2. Assume that Assumption 1 holds. Let {xk
i }(i = 1, . . . , n + 1), {uk

} be the sequences generated by
lgorithm 1, respectively. If the conditions (23) hold, then the corresponding primal sequences {xk

i }(i = 1, . . . , n)
eakly converge to a solution of system of monotone inclusions (1) mentioned above.

roof. It follows from (24) that
k k k k
(i) xi − x̄i → 0, i = 1, . . . , n + 1, u − ū → 0; (31)

525

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

f

s

M

a

r

i

w
c
p

w

S
p

o
s
t
i

(i i) {(xk
i , ak

i)}, {xk
n+1}, {u

k
} are bounded in norm (32)

or i = 1, . . . , n.
Next, we will make use of Lemma 3 to prove the remaining part. To this end, we follow the definition of the

et T to get

T (x̄k, ak, αn+1(xk
n+1 − x̄k

n+1)+ ūk)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

Āi (x̄k
i)+ ak

i + Q∗i (αn+1(xk
n+1 − x̄k

n+1)+ ūk)
...

A−1
i (ak

i)− x̄k
i

...

B−1(αn+1(xk
n+1 − x̄k

n+1)+ ūk)−
∑n

i=1 Qi x̄k
i + q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

eanwhile, by (15) and (16), we further have

Āi (x̄k
i)+ ak

i + Q∗i (αn+1(xk
n+1 − x̄k

n+1)+ ūk)

∋ αi (xk
i − x̄k

i)− ak
i − Q∗i ūk

+ ak
i + Q∗i (αn+1(xk

n+1 − x̄k
n+1)+ ūk)

= αi (xk
i − x̄k

i)+ αn+1 Q∗i (xk
n+1 − x̄k

n+1)

nd

B−1 (
αn+1(xk

n+1 − x̄k
n+1)+ ūk)

−
∑n

i=1 Qi x̄k
i + q

∋ x̄k
n+1 −

∑n
i=1 Qi x̄k

i + q,

espectively. So, the set

T (x̄k, ak, αn+1(xk
n+1 − x̄k

n+1)+ ūk)

ncludes⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

αi (xk
i − x̄k

i)+ αn+1 Q∗i (xk
n+1 − x̄k

n+1)
...

xk
i − x̄k

i
...

x̄k
n+1 −

∑n
i=1 Qi x̄k

i + q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

hich strongly converges to zero due to (28) and (31) and boundedness of each Qi . On the other hand, we shall
heck weak convergence of each of the involved sequences. In fact, according to (32), there exists one weak cluster
oint such that

(xk j , ak j) ⇀ (x∞, a∞), uk j ⇀ u∞,

hich, together with (31), implies

x̄k j ⇀ x∞, ak j ⇀ a∞, αn+1(x
k j
n+1 − x̄

k j
n+1)+ ūk j ⇀ u∞.

o, we can conclude that this cluster point solves 0 ∈ T (x, a, u) as desired and solves the problem (1) as well. The
roof of uniqueness of weak cluster point is standard, see [5,19] for more details. □

Here we would like to stress that, one important contribution of this article is that we prove weak convergence
f Algorithm 1 by developing more self-contained and less convoluted techniques. In essence, our proof is not a
imple generalization since tendency of ∥wk

− w∗∥ to zero is required in the proof of [9]. It is well known [8]
hat this tendency to zero may fail to hold for the proximal point algorithm (and the resulting splitting methods) in

nfinite-dimensional Hilbert spaces.

526

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

5

A

A

5

5. Special cases

In this section, we discuss several important cases of Algorithm 1.

.1. Case 1

In the n = 1 case, the system of monotone inclusions (1) becomes the following monotone inclusion

0 ∈ Ā(x)+ A(x)+ Q∗B(Qx − q). (33)

ssume that ∅ ̸= dom Ā ⊆ domA, ∅ ̸= domB. In this case, Algorithm 1 reduces to

lgorithm 2.

Step 0. Choose x0
∈ H, a0

∈ A(x0), y0
∈ G, u0

∈ G. Choose α > 0, α̂ > 0 and θ ∈ (0, 2). Set k := 0.
Step 1. Choose β satisfying

β > ∥Q∥2/(4α)+ 1/(4α̂).

For xk
∈ H, ak

∈ A(xk), yk
∈ G, uk

∈ G. Compute

ūk
= uk

− (yk
− Qxk

+ q)/β,

(α I + Ā)(x̄k) ∋ αxk
− ak
− Q∗ūk,

(α̂ I + B)(ȳk) ∋ α̂yk
+ ūk .

If some stopping criterion is met, then stop. Otherwise, compute

φk :=α∥xk
− x̄k
∥

2
+ ⟨ȳk

− Qx̄k
+ q, uk

− ūk
⟩,

ϕk :=∥xk
− x̄k
∥

2
+ ∥ȳk

− Qx̄k
+ q∥2,

γk :=θφk/ϕk .

Step 2. Compute in order

(α I + A)(xk+1) ∋ αxk
+ ak
− γk(xk

− x̄k),

α̂yk+1
= α̂yk

− γk(yk
− ȳk),

uk+1
= uk

− γk(ȳk
− Qx̄k

+ q),

ak+1
= α(xk

− xk+1)+ ak
− γk(xk

− x̄k).

Set k := k + 1.

.2. Case 2

If we further assume that B, Q, q vanish, then (33) reduces to

0 ∈ Ā(x)+ A(x). (34)

Thus, Algorithm 2 becomes

Algorithm 3. A special case of Algorithm 2, i.e., Douglas–Rachford splitting method in [5]

Step 0. Choose x0
∈ H, α > 0. Choose θ ∈ (0, 2). Set k := 0.

Step 1. For xk
∈ H, ak

∈ A(xk). Compute

(α I + Ā)(x̄k) ∋ αxk
− ak .

Step 2. Compute

(α I + A)(xk+1) ∋ αxk
+ ak
− θα(xk

− x̄k).
Set k := k + 1.

527

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

T

5

a

t

5

Obviously, if Ā vanishes and θ = 1, then Algorithm 3 reduces to

(α I + A)(xk+1) ∋ αxk .

his is nothing but the aforementioned proximal point algorithm.

.3. Case 3

When B is the sub-differential of the indicator function of the singleton set {0}. In this case, the system of
monotone inclusions (1) becomes

0 ∈ Āi (xi)+ Ai (xi)+ Q∗i u, i = 1, . . . , n, (35)

0 =
∑n

i=1 Qi xi − q. (36)

Meanwhile, Assumption 1 indicates that it has at least one solution. Thus, Algorithm 1 correspondingly reduces to
the following Algorithm 4, which is particularly useful in practice.

Algorithm 4. A special case of Algorithm 1, used for solving (35)–(36)

Step 0. Choose x0
∈ H, α > 0. Choose θ ∈ (0, 2). Set k := 0.

Step 1. Choose β satisfying

β >
∑n

i=1∥Qi∥
2/(4αi).

For xk
i ∈ Hi , ak

i ∈ Ai (xk), i = 1, . . . , n, uk
∈ G. Compute in order

ūk
= uk

− (−
∑n

i=1 Qi xk
i + q)/β, (37)

(αi I + Āi)(x̄k
i) ∋ αi xk

i − ak
i − Q∗i ūk .

If some stopping criterion is met, stop. Otherwise, compute

γk := θ

∑n
i=1αi∥xk

i − x̄k
i ∥

2
+ ⟨−

∑n
i=1 Qi x̄k

i + q, uk
− ūk
⟩∑n

i=1∥x
k
i − x̄k

i ∥
2 + ∥ −

∑n
i=1 Qi x̄k

i + q∥2
.

Step 2. Compute in order

(αi I + Ai)(xk+1
i) ∋ αi xk

i + ak
i − γk(xk

i − x̄k
i), i = 1, . . . , n,

uk+1
= uk

− γk(−
∑n

i=1 Qi x̄k
i + q),

ak+1
i = αi (xk

i − xk+1
i)+ ak

i − γk(xk
i − x̄k

i), i = 1, . . . , n.

Set k := k + 1.

In practical implementations, we usually calculate

∆ :=
∑n

i=1∥Qi∥1∥Qi∥∞/(4αi),
∆′ := min{∥Q1∥1∥Q1∥∞/(4α1), . . . , ∥Qn∥1∥Qn∥∞/(4αn)}

nd then by our numerical experience choose

β = κ ∆+ 10−9∆′, κ ≥ 1 (38)

o guarantee the method’s efficiency since it eventually satisfies the condition (13).

.4. Case 4

Notice that a special case of (35)–(36) is optimality conditions of the following convex minimization problem

minimize
∑n

i=1 fi (xi),

subject to
∑n

i=1 Qi xi = q, xi ∈ Xi , i = 1, . . . , n, (39)
528

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

A

A

i

6

g

w

A

where, for i = 1, . . . , n, fi is a closed, proper and convex function from Rni to R, Qi is an m-by-ni matrix and
QT

i is its transpose, q ∈ Rm , and Xi is a nonempty closed convex set in Rni .
In this case, once we set

Āi := ∂δXi , Ai := ∂ fi

and we further follow [9] to require the involved parameters to satisfy

β = α̃, αi = α̃, i = 1, . . . , n, α̃ >
√

n max{∥Qi∥ : i = 1, . . . , n}, (40)

lgorithm 4 reduces to

lgorithm 5. A special case of Algorithm 4

Step 0. Choose x0
∈ H, α̃ > 0. Choose θ ∈ (0, 2). Set k := 0.

Step 1. For xk
i ∈ Hi , ak

i ∈ ∂ fi (xk), i = 1, . . . , n, uk
∈ G. Compute in order

ūk
= uk

− (−
∑n

i=1 Qi xk
i + q)/α̃,

x̄k
i = PXi (α̃xk

i − ak
i − Q∗i ūk).

If some stopping criterion is met, stop. Otherwise, compute

γk := θ

∑n
i=1α̃∥x

k
i − x̄k

i ∥
2
+ ⟨−

∑n
i=1 Qi x̄k

i + q, uk
− ūk
⟩∑n

i=1∥x
k
i − x̄k

i ∥
2 + ∥ −

∑n
i=1 Qi x̄k

i + q∥2
.

Step 2. Compute in order

(α̃ I + ∂ fi)(xk+1
i) ∋ α̃xk

i + ak
i − γk(xk

i − x̄k
i), i = 1, . . . , n,

uk+1
= uk

− γk(−
∑n

i=1 Qi x̄k
i + q),

ak+1
i = α̃(xk

i − xk+1
i)+ ak

i − γk(xk
i − x̄k

i), i = 1, . . . , n.

Set k := k + 1.

Algorithm 5 is actually an equivalent version of the algorithm proposed by He and Han [9]. In practical
mplementations, we may choose

β = αi = α̃ = 1.0001 max
i=1,...,n

{√
n∥Qi∥1∥Qi∥∞

}
, i = 1, . . . , n. (41)

. Relations to other splitting methods

In this section, we compare our suggested splitting methods with other ones, which are well suited for solving
eneral monotone inclusion (1). For simplicity, we only consider Euclidean spaces.

Consider the following monotone inclusion

0 ∈ Ax + 0.5LT
1 B1(L1x − r1)+ 0.5LT

2 B2(L2x − r2) ⇔

0 ∈ 2Ax + LT
1 B1(L1x − r1)+ LT

2 B2(L2x − r2),

here A : Rn ⇒ Rn , B1 : Rp ⇒ Rp and B2 : Rq ⇒ Rq are maximal monotone, L1 : Rn
→ Rp and

L2 : Rn
→ Rq are linear, and r1 ∈ Rp, r2 ∈ Rq .

A splitting method for this monotone inclusion, due to Vũ [21] and Condat [1], can be stated as follows.

lgorithm 6.

Step 0. Choose x0
∈ Rn, v0

1 ∈ Rp, v0
2 ∈ Rq . Choose positive numbers τ, σ1, σ2 such that

σ1∥L1∥
2
+ σ2∥L2∥

2 < 2τ−1.

Set k := 0.
529

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

i

w

A

Step 1. Compute

pk
= (I + τ A)−1(xk

− 0.5τ (LT
1 vk

1 + LT
2 vk

2)),

yk
= 2pk

− xk .

Choose λk ∈ [0.01, 1.99] and compute

xk+1
= xk

+ λk(pk
− xk),

vk+1
1 = vk

1 + λk(I + σ1 B−1
1)−1(vk

1 + σ1(L1 yk
− r1))− λkv

k
1,

vk+1
2 = vk

2 + λk(I + σ2 B−1
2)−1(vk

2 + σ2(L2 yk
− r2))− λkv

k
2 .

Set k := k + 1.

Note that the following Moreau identity

(I + σ B−1)−1(u) ≡ u − σ (I +
1
σ

B)−1(
u
σ

), σ > 0.

s useful.
Consider the following monotone inclusion

0 ∈ GT
1 A1G1z + GT

2 A2G2z + A3z,

here A1 : Rp ⇒ Rp, A2 : Rq ⇒ Rq and A3 : Rn ⇒ Rn are maximal monotone, G1 : Rn
→ Rp and

G2 : Rn
→ Rq are linear. Under suitable assumptions, it becomes

0 = GT
1 w1 + GT

2 w2 + w3,

w1 ∈ A1G1z, w2 ∈ A2G2z, w3 ∈ A3z.

A splitting method of [11, Algorithm 1] for this monotone inclusion, due to Johnstone and Eckstein, reads

lgorithm 7.

Step 0. Choose z1
∈ Rn, w1

= (w1
1, w

1
2, w

1
3)T , w1

1 ∈ Rp, w1
2 ∈ Rq , w1

3 ∈ Rn . Choose x0
1 ∈ Rp, x0

2 ∈ Rq , x0
3 ∈

Rn . Choose 0 < αi ≤ 1, ρi > 0, i = 1, 2, 3 and γ > 0. Set k := 1.
Step 1. For i = 1, 2, 3, compute

tk
i = (1− αi)xk−1

i + αi G i zk
+ ρiw

k
i ,

xk
i = (I + ρi Ai)−1(tk

i), yk
i = ρ−1

i (tk
i − xk

i).

Calculate

uk
1 = xk

1 − G1xk
3 , uk

2 = xk
2 − G2xk

3 , vk
= GT

1 yk
1 + GT

2 yk
2 + yk

3 .

If πk := ∥uk
∥

2
+ γ−1

∥vk
∥

2 > 0, then compute

ϕ(zk, wk) = ⟨zk, vk
⟩ + ⟨wk

1, uk
1⟩ + ⟨w

k
2, uk

2⟩ − [⟨xk
1 , yk

1 ⟩ + ⟨x
k
2 , yk

2 ⟩ + ⟨x
k
3 , yk

3 ⟩].

Let τk =
1
πk

max{0, ϕ(zk, wk)}, and go to Step 2. Otherwise, stop.
Step 2. Compute

zk+1
= zk
− γ−1τkv

k, wk+1
1 = wk

1 − τkuk
1,

wk+1
2 = wk

2 − τkuk
2, wk+1

3 = −GT
1 wk+1

1 − GT
2 wk+1

2 .

Set k := k + 1.

Be aware that Algorithms Algorithm 2, Algorithm 6, Algorithm 7 share a common feature: At each iteration,
the resolvent of each operator has to be computed once.
530

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

s
p

a

n

w
i
(

w

T

w

c

T

w

7. Rudimentary experiments

In this section, we confirmed practical usefulness of Algorithm 1, together with its special cases. In our writing
tyle, rather than striving for maximal test problems, we tried to make the basic ideas and techniques as clear as
ossible.

All numerical experiments were run in MATLAB R2020a(9.8.0) with 64-bit (win64) on a desktop computer with
n Intel(R) Core(TM) i5-7400 CPU 3.00 GHz and 8.00 GB of RAM. The operating system is Windows 10.

VC splitting: The splitting method due to Vũ [21] and Condat [1], i.e., Algorithm 6.
He-Han: The aforementioned equivalent version of the algorithm proposed by He and Han [9], i.e., Algorithm 5.
Extended Splitting: An extended splitting method of [4, Algorithm 3.1], which is designed for solving (1) with
= 1 but Ā being further assumed to be inverse strongly monotone.
JE splitting: The splitting method of [11, Algorithm 1] due to Johnstone and Eckstein, i.e., Algorithm 7.
Our first test problem is to solve the following convex minimization with linear constraints

minimize
∑n

i=1 ϑ |xi | +
1
2

x2
i , subject to

∑n
i=1 Qi xi = q,

here ϑ > 0, Qi ∈ Rm , i = 1, . . . , n are randomly-generated sparse vectors, with each entry being in the
nterval (−1, 1). We set q =

∑n
i=1 Qi

∑n
i=1 so as to guarantee that this problem has at least one feasible point

1, . . . , 1)T
∈ Rn .

This test problem can be rewritten as

minimize f̄ (x)+ f (x), subject to Qx = q,

here Q := [Q1, . . . , Qn] and

f̄ (x) :=
∑n

i=1, f (x) :=
1
2
∥x∥2.

Obviously, this feasible point above satisfies (10).
The resulting optimality conditions correspond to (35) with

Āi (·) := ϑ ∂| · |, Ai (xi) := xi , B = ∂δ{0}.

In practical implementations, we chose n = 500, m = 10 and ϑ = 100 (be aware that ϑ shall be large so as to
emphasize the role of

∑n
i=1 |xi | in the objective function). Furthermore, for Algorithm 2, we set

x̃k
i := xk

i − (ak
i + Q∗i ūk)/αi ,

and got

(αi I + Āi)(x̄k
i) ∋ αi x̃k

i ⇒ x̄k
i = (I + α−1

i Āi)−1(x̃k
i).

hus, we further got

x̄k
i = (I + α−1

i ϑ ∂| · |)−1(x̃k
i) = sgn(x̃k

i) max
{
|x̃k

i | − α−1
i ϑ, 0

}
,

here the term on the righthand side is the so-called soft shrinkage function.
For Algorithm 4, we chose θ = 1.9, and αi = 1 for i = 1, . . . , 500. The primal and dual starting points were

hosen as

x0
= ones(n, 1), u0

= zeros(m, 1).

o get β, we adopted (38) with κ = 1.
For VC splitting, we chose

2A = ∂ f, B1 = I, B2 = ∂δ{0}, L1 = I, r1 = zeros(n, 1), L2 = Q, r2 = q,

here f (x) :=
∑n

i=1 ϑ |xi |
∑n

i=1, and we chose

τ = 0.02, λk ≡ 1.2, σ1 = 0.1, σ2 = 0.1,

x0
= ones(n, 1), v0

1 = zeros(n, 1), v0
2 = zeros(m, 1).
531

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

w
T

w

a

a

For He-Han, we made use of (41) and chose θ = 1.9 for better numerical performance. Strictly speaking, this
test problem is not a special case of (39). Yet, the corresponding method refers to Algorithm 4, but with (41).

For JE splitting, we chose

A1 = ∂δ{q}, A2 = ∂ f, A3 = I, G1 = Q, G2 = I,

where f (x) :=
∑n

i=1 ϑ |xi |
∑n

i=1 , and we chose

z1
= ones(n, 1), w1

1 = zeros(m, 1), w1
2 = ϑ ∗ z1,

w1
3 = −GT

1 ∗ w1
1 − GT

2 ∗ w1
2,

x0
1 = zeros(m, 1), x0

2 = zeros(n, 1), x0
3 = zeros(n, 1),

α = [0.9, 0.9, 0.9], ρ = [1, 1, 1], γ = 10,

To compare these algorithms, we mimic the style of [11] to introduce

fk :=

∑n
i=1 fi (xk

i)− f ∗

f ∗
+ ∥Qxk

− q∥,

where f ∗ is the optimal value of the objective function. To estimate it, we used the best feasible value returned by
Algorithm 4 after 900 iterations. The corresponding numerical results were reported in Figure 2, where the y-axis
was labeled as log10(fk).

Our second test problem is the following linear program:

minimize δR3
+

(x1)+ cT
1 x1 + δR2

+
(x2)+ cT

2 x2,

subject to Q1x1 + Q2x2 − q = 0,

where

c1 = (−5,−2,−3)T , c2 = (1,−1)T

and

Q1 =

(
1 2 2
3 4 1

)
, Q2 =

(
1 0
0 1

)
, q =

(
8
7

)
.

Notice that x∗ = (1.2, 0, 3.4, 0, 0)T is the exact solution.
This linear program can be rewritten as

minimize δR5
+

(x)+ cT x, subject to Qx − q = 0,

here c := (−5,−2,−3, 1,−1)T , Q = [Q1, Q2]. Obviously, a feasible point (1, 0.1, 3, 0.8, 0.6)T satisfies (10).
hus, the resulting optimality conditions easily follows.

By taking

Ā1 = ∂δR3
+
, A1(x1) = c1, Ā2 = ∂δR2

+
, A2(x2) = c2,

e applied Algorithm 4 to solving it. We chose

x0
1 = (0, 0, 0)T , x0

2 = (0, 0)T , u0
= (0, 0)T

s the starting points and chose θ = 1.4, α1 = 1, α2 = 2.5. To get β, we adopted (38) with κ = 1.
For VC splitting, we chose

2Ax = c, B1 = ∂δR5
+
, B2 = ∂δ{0},

L1 = I, r1 = zeros(5, 1), L2 = Q, r2 = q,

nd we chose

τ = 0.04, λk ≡ 1.2, σ1 = 1, σ2 = 1,

x0
= zeros(5, 1), v0

1 = zeros(5, 1), v0
2 = zeros(2, 1).

For He-Han, we made use of (41) and chose θ = 1.4 for better numerical performance.
532

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

a

w

w

a
i

t

I

f

t

a

a

For JE splitting, we chose

A1z = c, A2 = ∂δ{q}, A3 = ∂δR5
+
, G1 = I, G2 = Q,

nd we chose

z1
= zeros(5, 1), w1

1 = c, w1
2 = zeros(2, 1), w1

3 = zeros(5, 1),

x0
1 = zeros(5, 1), x0

2 = zeros(2, 1), x0
3 = zeros(5, 1),

α = [0.9, 0.9, 0.9], ρ = [1, 1, 1], γ = 10.

The corresponding numerical results were reported in Figure 2, where the y-axis was labeled as log10(∥xk
−x∗∥).

Our third test problem is from [4], which is to find an x ∈ Rm such that

0 ∈ Dx − d + Q∗∂δC(Qx − q),

here

D = tridiag (−1− h, 4+ 2h,−1),

here h := 1/(m + 1), and

Q = [eye(m); (−1/m) ∗ ones(1, m)]; q = [zeros(m, 1);−1/m]

nd C ⊆ Rm+1 is the first orthant. To ensure that e1 = (1, 0, . . . , 0)T solves it, we set d = De1 in our practical
mplements. Thus, the problem’s unique solution x∗ = e1. We chose

Āx = 0.5(D + DT)x − d, A = 0.5(D − DT), B = ∂δC

o match the problem (1), as done in [4]. In addition, we chose m = 1000 and

x0
= zeros(m, 1), u0

= zeros(m + 1, 1).

n practical implementations, for the parameters in Algorithm 2, we set α1 = 1, α2 = 1 and we first chose

θ ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 1.99}, κ ∈ {1, 2}

or 12 times of trials and finally chose θ = 1.2 and κ = 2 in (21) for better numerical performance.
Be aware that, for Step 2 in Algorithm 2, we directly used Matlab solver (cf. (22)) to solve(

α I + 0.5(D − DT)
)

x = αxk
+ ak
− γk(xk

− x̄k)

o get xk+1.
For VC splitting, we chose

2Ax = 0.5(D + DT)x − d, B1 = 0.5(D − DT), B2 = ∂δC,

L1 = I, r1 = zeros(m, 1), L2 = Q, r2 = q,

nd we chose

τ = 0.5, λk ≡ 1.4, σ1 = 1.6, σ2 = 1.6,

x0
= zeros(m, 1), v0

1 = zeros(m, 1), v0
2 = zeros(m + 1, 1).

For Extended Splitting, we implemented it in the same way as [4].
For JE splitting, we chose

A1 = ∂δ{q}, A2z = 0.5(D + DT)z − d, A3 = 0.5(D − DT),
G1 = Q, G2 = I,

nd we chose

z1
= zeros(m, 1), w1

1 = zeros(m + 1, 1),

w1
2 = 0.5(D + DT)z1

− d, w1
3 = −GT

1 ∗ w1
1 − GT

2 ∗ w1
2,

0 0 0
x1 = zeros(m + 1, 1), x2 = zeros(m, 1), x3 = zeros(m, 1),

533

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

S
p

a
n

t

p

w

a

α = [0.9, 0.9, 0.9], ρ = [1, 1, 1], γ = 10.

The corresponding numerical results were reported in Fig. 3, where the y-axis was labeled as log10(∥xk
− x∗∥).

Our fourth test problem is to solve the following convex minimization with linear constraints

minimize δXi (xi)+
∑n

i=1 fi (xi), subject to
∑n

i=1 i xi = 1,

where

Xi := {xi : 1 ≥ xi ≥ 1/(n(n + 1))}, i = 1, . . . , n, fi (xi) := xi − t ln xi .

Its equivalent form is

minimize δX (x)+ f (x), subject to Qx = 1

where Q = (1, . . . , n) and

X := {x : 1 ≥ xi ≥ 1/(n(n + 1)), i = 1, . . . , n}, f (x) :=
∑n

i=1 fi (xi).

Obviously, a feasible point x∗, with x∗i = 1/(ni), i = 1, . . . , n, satisfies (10). Notice that this point is also the
unique solution.

For this test problem, its optimality conditions correspond to (35)–(36) with

Āi := ∂δXi , Ai := ∇ fi , Qi = i, q = 1.

In practical implementations, set n = 10, t = 1/(2n), θ = 1 and

x0
= ones(n, 1), u0

= 0.

For Algorithm 4, we took each αi to be some value equal to or close to local Lipschitz constant of ∇ fi , where

∇ fi (xi) = 1− t/xi .

ince ∇2 fi (xi) = t/x2
i (its absolute value corresponds to local Lipschitz “constant”) is no longer constant, in

ractical implementations, we had to allow αi to vary from iteration to iteration. At kth iteration, we took

αi ← αk
i = t/(xk

i)2

s an approximation of local Lipschitz constant of ∇ fi around xk
i . To get β, we adopted (38) with κ = 1. There is

o need to worry about convergence because we can keep αi unchanged after the first finite iterations.
Be aware that, for Step 2 in Algorithm 4, in order to solve

(αi I +∇ fi)(xi) = αi xk
i + ak

i − γk(xk
i − x̄k

i), i = 1, . . . , n

o get xk+1
i , we consider

αi xi + 1−
t
xi
= αi xk

i + ak
i − γk(xk

i − x̄k
i), i = 1, . . . , n.

Since it can be converted into quadratic equation with respect to the variable xi and ln xi implies that xi must be
ositive, we took its unique positive root as xk+1

i , i.e.,

xk+1
i =

wk
i − 1+

√
(wk

i − 1)2 + 4αi t

2αi
, i = 1, . . . , n,

here wk
i := αi xk

i + ak
i − γk(xk

i − x̄k
i).

For VC splitting, we chose

2A = ∇ f, B1 = ∂δX , B2 = ∂δ{0},

L1 = I, r1 = zeros(n, 1), L2 = (1, . . . , n), r2 = 1,

nd we chose

τ = 0.02, λk ≡ 1.0, σ1 = 0.1, σ2 = 0.1,

0 0 0
x = zeros(n, 1), v1 = zeros(n, 1), v2 = 0.

534

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

A
h
b

c

Fig. 1. Numerical results on the first test problem.

Fig. 2. Numerical results on the second test problem.

For He-Han, its parameters were chosen by (41) and θ = 1 for better numerical performance.
For JE splitting, we chose

A1 = ∇ f, A2 = ∂δ{1}, A3 = ∂δX , G1 = I, G2 = (1, . . . , n),

and we chose

z1
= ones(n, 1), w1

1 = (1− t)z1, w1
2 = 0,

w1
3 = −GT

1 ∗ w1
1 − GT

2 ∗ w1
2, x0

1 = zeros(n, 1), x0
2 = 0,

x0
3 = zeros(n, 1), α = [0.9, 0.9, 0.9], ρ = [1, 1, 1], γ = 10.

The corresponding numerical results were reported in Fig. 4, where the y-axis was labeled as log10(∥xk
− x∗∥).

From Figs. 1–4, we can see that all these four test problems were stably and efficiently solved by either
lgorithm 2 or Algorithm 4. Furthermore, either always outperformed other state-of-the-art algorithms in achieving
igher accuracy for the first, second and fourth. In particular, for the hardest fourth problem, it was significantly
etter than other three ones.

At the end of this section, we would like to stress two points. One is that Algorithm 1, together with its special
ase, has a nice feature: take full advantage of separable structures so that each subproblem is easier to solve. In
535

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537
Fig. 3. Numerical results on the third test problem.

Fig. 4. Numerical results on the fourth test problem.

contrast, the classical augmented Lagrangian method does not have such a nice feature; see [9] for more details.
The other is that Algorithm 1 is originally designed for solving more general monotone inclusions (1) than [2–6,10].
So, we have no intension to make numerical comparisons among these algorithms.

8. Conclusions

In this article, we have considered the problem of finding a zero of separable systems of monotone inclusions
in real Hilbert spaces, and we have suggested a splitting method, which can be viewed as a powerful extension
of the classical Douglas–Rachford splitting. Furthermore, under the weakest possible assumptions, we have proven
its weak convergence by invoking more self-contained and less convoluted techniques. Impressively, our suggested
splitting method inherits an appealing feature of the classical Douglas–Rachford splitting method: the involved
scaling factors can be any given positive numbers, respectively. Furthermore, we have done numerical experiments
to confirm practical usefulness of this method, together with its special cases, in solving our test problems of
separable structure.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.
536

Y. Dong Mathematics and Computers in Simulation 203 (2023) 518–537

t
w

R

Acknowledgments

The author is greatly indebted to the editor and the referee for their suggestions, which improve the quality of
his article. Special thanks go to Dr. Xue Zhang, Xiao Zhu, Mengdi Sun and Yiyi Li for writing Matlab codes. This
ork was partially supported by the National Natural Science Foundation of China (11901368).

eferences
[1] L. Condat, A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms, J.

Optim. Theory Appl. 158 (2) (2013) 460–479.
[2] Y.D. Dong, Douglas-Rachford splitting method for semi-definite programming, J. Appl. Math. Comput. 51 (2016) 569–591.
[3] Y.D. Dong, New inertial factors of the Krasnosel’skiı̆-Mann iteration, Set-Valued Var Anal. 29 (1) (2021) 145–161.
[4] Y.D. Dong, Weak convergence of an extended splitting method for monotone inclusions, J. Global Optim. 79 (2021) 257–277.
[5] Y.D. Dong, A. Fischer, A family of operator splitting methods revisited, Nonlinear Anal. 72 (2010) 4307–4315.
[6] Y.D. Dong, X.H. Yu, A new splitting method for monotone inclusions of three operators, Calcolo 56 (1) (2019) 3.
[7] J. Eckstein, D.P. Bertsekas, On the douglas-rachford splitting method and the proximal algorithm for maximal monotone operators,

Math. Program. 55 (1992) 293–318.
[8] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991) 403–419.
[9] H.J. He, D.R. Han, A distributed Douglas-Rachford splitting method for multi-block convex minimization problems, Adv. Comput.

Math. 42 (1) (2016) 27–53.
[10] O.S. Iyiola, C.D. Enyi, Y. Shehu, Reflected three-operator splitting method for monotone inclusion problem, Optim Methods Softw.

http://dx.doi.org/10.1080/10556788.2021.1924715, in press.
[11] P.R. Johnstone, J. Eckstein, Single-forward-step projective splitting: exploiting cocoercivity, Comput. Optim. Appl. 78 (2021) 125–166.
[12] P. Latafat, P. Patrinos, Asymmetric forward–backward-adjoint splitting for solving monotone inclusions involving three operators,

Comput. Optim. Appl. 68 (1) (2017) 57–93.
[13] P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16 (1979) 964–979.
[14] B. Martinet, Regularisation d’inéquations variationelles par approximations successives, Rev Fr D’Inform. Recherche Opér. 4 (1970)

154–158.
[15] S.Y. Matsushita, On the convergence rate of the Krasnosel’skiı̆-Mann iteration, B Austr. Math. Soc. 96 (1) (2017) 162–170.
[16] G.J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962) 341–346.
[17] T. Pennanen, Dualization of generalized equations of maximal monotone type, SIAM J. Optim. 10 (3) (2000) 809–835.
[18] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1) (1970) 75–88.
[19] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877–898.
[20] D.R. Sahu, Applications of accelerated computational methods for quasi-nonexpansive operators to optimization problems, Soft Comput.

24 (2020) 17887–17911.
[21] B. Vũ, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput. Math. 38 (3) (2013) 667–681.
[22] D. Wicht, M. Schneider, T. Böhlke, An efficient solution scheme for small-strain crystal-elasto-viscoplasticity in a dual framework,

Comput. Methods Appl. Mech. Engrg. 358 (2020) 112611.
537

http://refhub.elsevier.com/S0378-4754(22)00293-2/sb1
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb1
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb1
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb2
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb3
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb4
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb5
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb6
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb7
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb7
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb7
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb8
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb9
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb9
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb9
http://dx.doi.org/10.1080/10556788.2021.1924715
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb11
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb12
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb12
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb12
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb13
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb14
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb14
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb14
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb15
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb16
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb17
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb18
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb19
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb20
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb20
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb20
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb21
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb22
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb22
http://refhub.elsevier.com/S0378-4754(22)00293-2/sb22

	A new splitting method for systems of monotone inclusions in Hilbert spaces
	Introduction
	Preliminaries
	Main results
	Weak convergence
	Special cases
	Case 1
	Case 2
	Case 3
	Case 4

	Relations to other splitting methods
	Rudimentary experiments
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

