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Abstract

In this article, we consider the problem of finding a zero of systems of monotone inclusions in real Hilbert spaces.
Furthermore, each monotone inclusion consists of three operators and the third is linearly composed. We suggest a splitting
method for solving them: At each iteration, for each monotone inclusion, it mainly needs computations of three resolvents for
individual operator. This method can be viewed as a powerful extension of the classical Douglas—Rachford splitting. Under
the weakest possible assumptions, by introducing and using the characteristic operator, we analyze its weak convergence. The
most striking feature is that it merely requires each scaling factor for individual operator be positive. Numerical results indicate
practical usefulness of this method, together with its special cases, in solving our test problems of separable structure.
© 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Fori =1,...,n,let H; and G be real infinite-dimensional Hilbert spaces. In this article, we are mainly concerned
with the following system of monotone inclusions
0€Ai(x)+Aix)+ QB (Y 0ixi —q), i=1,....n, (1)

where A;, A; : H; = H; are maximal monotone operators, B : G = G is maximal monotone operator, and
each Q; : H; — § is nonzero bounded linear operator with its adjoint operator Qf, and g € G is a vector. The
problem above models a wide range of problems arising from definite linear systems, linear/quadratic programming,
complementarity problems, variational inequality problems and optimal control [19].

For an important case

0 € A(x) + A(x), ()

one may resort to the Douglas—Rachford splitting method (DR method for short) of Lions and Mercier [13]; see
the Refs. [2,3,5,7,10,20] and Algorithm 3.

In the n = 1 case, the author discussed how to solve semi-definite programming by DR method and a modified
version in a 2010 conference report, which is an early draft of [2].
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In general n case, He and Han [9] considered a class of separable convex minimization problems with linear
constraints in Euclidean spaces, which is shown to be a special case of (1) below, and proposed an iterative scheme.
Their proposed method contains the ingredient of the DR splitting, and at each iteration it merely needs to solve
much easier subproblems.

Inspired by these two works, we in this article consider how to further apply the DR splitting to solving more
general problem (1) above. As a result, we suggest a new splitting method. Under the weakest possible assumptions,
by introducing and using the characteristic operator (see Lemma 1 below for more details), we analyze its weak
convergence. One of the most striking features is that it merely requires each scaling factor for individual operator
be positive.

For our suggested splitting method, it just reduces to the classical Douglas—Rachford splitting, when applied to
solving the two-operator monotone inclusion (2) above.

Interestingly, in a very special case of B being the sub-differential of the indicator function of the singleton set
{0} (and others), our suggested splitting method coincides with an equivalent version of the algorithm proposed by
He and Han [9] . Yet, even in this case, our way of choosing the parameter involved in (37) is a new idea. It is
given by (38) and essentially different from theirs.

Our suggested splitting method is reminiscent of an extended splitting method of [4, Algorithm 3.1], which is
best suited for solving

0eCx)+Ax)+ Q"B (Qx —¢q), 3)

corresponding to (1) with n = 1 and A := C being further inverse strongly monotone. In contrast, its novelties
include: (i) There is no need to evaluate the constant with respect to inverse strong monotonicity; (ii) its scope of
applications is much wider and it can solve all four test problems whereas the method of [4, Algorithm 3.1] fails
to do so; see Section 7 for more details.

For our suggested splitting method, we also did rudimentary experiments to confirm that it, together with its
special cases, is easily implementable and practically efficient for our test problems.

2. Preliminaries

In this section, we first give some basic definitions and then provide some auxiliary results for later use. Moreover,
we formally state general systems of monotone inclusions in real Hilbert spaces under consideration.
Let Q : H — G be nonzero bounded linear operator with its adjoint operator Q*. Then its norm | Q| is given
by
101 = max {V/(u, 0*0u) : llull =1, u e 1},

where (-, -) stands for usual inner product. If in finite-dimensional spaces, then Q becomes an m-by-n matrix. Thus,
it is well-known that [|Q]*> < ||Qll; - | Ollso, Where

12l = jgaan?;qu‘jL 1Qlloc == max > il

Definition 1. Let H be a real Hilbert space. Let f : H — (—o0, +00] be a closed proper convex function. Then
for any given x € H the sub-differential of f at x is defined by

ofx)y=={seH: fOy)— fx)=>(s,y—x), Vy e H}.

Each element s is called a sub-gradient of f at x. Moreover, if f is further continuously differentiable, then
af (x) = {V f(x)}, where V f(x) is the gradient of f at x.

To concisely give the following definition, we agree on that the notation (x,a) € A and x € H, a € A(x) have
the same meaning.
Definition 2. Let A : { == H be an operator. It is called monotone iff
(x—x',a—d)>0, V(kx,a)eA, V&', d)eA;
maximal monotone iff it is monotone and for given x € H and a € H the following implication relation holds
(x—%,a—a)>0, Vix,a)eA = (x,a)€A.
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Definition 3. A single-valued operator A : H — H is called Lipschitz continuous with modulus « > 0 if
[Ax) = AW <« llx =yl
holds for all x, y € H.

Definition 4. Let C : H — H be an operator. C is called inverse strongly monotone if there exists some ¢ > 0
such that

(x —y,Cx) = C(y) = cllCx) = CWI?, Vx,y e M.

It is well known that the sub-differential of any closed, proper and convex function in a real Hilbert space is
maximal monotone as well. An important instance is the indicator function §¢ of a convex subset C in a real Hilbert
space

0, if x € C,

be() = { +oo, ifx ¢C.

The closedness of §¢ is equivalent to the closedness of C. Thus, 3¢ to C is maximal monotone when C is closed
convex. Furthermore, the inverting operation of I + wddc equals the usual projection P onto the set C for any
given positive number j. In addition, if we set R’} := {x € R" : x > 0}, then P72f1F (x) = max{0, x}, which is of
component-wise maximum.

For any given maximal monotone operator A : H =2 H, its effective domain domA is defined by domA = {x €
H : A(x) # #}. A related property is that if x € domA then the set A(x) must be a nonempty closed convex set.
A fundamental property is that, as proved by Minty [16], for any given positive number & > 0 and x € H, there
exists a unique x € H such that (ol + A)(x) 3 x or (I + aA)(x) > X.

For any given maximal monotone operator A : H = H, the basic iterative procedure of finding its zeros is the
following proximal point algorithm [14,19]: Choose an initial point x° € H, and solve the monotone inclusion

(I +mA)x)s>xk, k=0,1,...

to get the new iterate x**!, where the proximal parameter u; > O can vary from iteration to iteration. For very
recent discussions, we refer to [3,10,15,20] and the references cited therein.
Denote

X a Aq

Xp a A,

Lemma 1. For systems of monotone inclusions (1), we introduce the dual variable u € G. Then

T(x,a,u)
A X 0o I QF X 0
= Al al+| -1 0 O al+1]0 4)
B! u -0 0 O u q

must be maximal monotone.

Proof. Note that A, A and B are maximal monotone. Thus, the first operator on the right-hand side is maximal
monotone. Meanwhile, the linearity of Q means that the second is also maximal monotone [16]. Maximality of T
follows from [18]. O

In this article, such T is called the characteristic operator or eigenoperator with respect to the problem (1) above.

3. Main results

In this section, we describe our suggested splitting method for systems of monotone inclusions (1) in details.
The method’s design is based on the following
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Assumption 1. For system of monotone inclusions (1), we assume that there exist x| € Hi, ...,.x € H,, x' 41 € g,
u* € G such that they solve

0e€Ai(x)+Aix)+ Qfu, i=1,...,n, (5)

0 € B(xpy1) —u, (6)

0=>3"71,0iXi —q — Xpy1. (7N

Furthermore, ¢ # domA,- C domA; fori=1,...,n,# # domB.
First of all, we would like to explain Assumption 1 a bit. For example, we consider
min f(x) + f(x) + g(Qx — q),

where f, f : R" — R, g : R™ — R are closed, proper convex functions, Q is an m x n matrix and ¢ € R™. If
there exists an x such that

x eri domf Nri domf, Qx —q €ri domg, ®)
then its optimality condition is

0edf(x)+af(x)+0"dg(0x —q),

where ri stands for the relative interior; see [17] for more details. If g is taken to be the indicator function §g;, then
(8) reduces to

x eridomf Nridomf, Qx—g=0 )
because the set ri domg becomes {0}, and we further have

0 € df(x)+3f (x) + Q" 380(Qx — q).
Of course, we may replace (9) by

x € int domf Nint domf, Qx — q =0, (10)

where int stands for the interior. This is stronger but more convenient, and it suffices to cover optimality conditions
of the first, second and fourth test problems.

Below we discuss how to use these conditions (5), (6) and (7) to design an iterative scheme for solving them.
For known x{ € H;, af € Aj(x}), i =1,...,n, x5, € G, u* € G. We first choose B > 0 and update the dual
iterate by

—k k k k
ur=u" —(x, — Z?:lQixi +4q)/B
to get the intermediate point #*. Such an idea, at least in the setting of the Douglas—Rachford splitting method,
first appeared in the aforementioned 2010 conference report. It plays a critical role in designing and analyzing the
method. Then, we compute

(1 + A)GEN) 3 aixt —ak — Qrit*, af e Ai(xD),
(@ni1] + B)E,)) 3 anpixyy, + i,

to get the intermediate points X and x! .

Denote
aix; +a; X1 — X
w = : , d= . , (11)
Upt1Xn+1 T Anti xn+11_ Xn+1
u - 2?:1 0ixi +q
where
apyl = O, Qn+1 = —1. (12)

We can prove that, if B is properly chosen, then the following desired inequality holds (w* — w*, d*) > 0, where
w* corresponds to the primal—dual solution. This indicates that —d* can provide a descent direction of ||w — w*||?
at w = wk. So, it is not difficult to get the following Algorithm 1.
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Algorithm 1. Our suggested splitting algorithm

Step 0. For i =1, ..., n, choose x? e H;, a? € A[(x?), xSH €eG,ueG. Fori=1,...,n+ 1, choose o; > 0
and 0 € (0,2). Set k :=0.
Step 1. Choose g satisfying

B> Y1007/ () + 1/(Batir). (13)
For xf € H;, af € Aj(x)), i=1,...,n, x5 €G, u* € G. Compute

it =ut =k =Y 0ixE +q)/B, (14)

(il + A)GED 3 aixf —ak — Qrit*, (15)

(@1l + B)(%py)) 3 g1 Xy, + il (16)

If some stopping criterion is met, then stop. Otherwise, compute
. 1 k_ =ky2 4 gz <k k_ -k
o =0 o llxf = TP+ (B, — Y Qi + g, ut — i),

. 1 k =k 2 -k =k 2
(23 '=Z?il ||xi —X; -+ ||xn+l - Z?:]Qix,‘ +ql°,

Ve =0/ Pr- (17)
Step 2. For i =1, ..., n, compute in order
(il + AN 3 aixf + af — yilxf = %), (18)
16,11 = 1 Xy = V(g = Fip), (19)
=t =@, — XL 0 4 9),
ai "t = ai(xf = x{Th + af =yl — E). (20)
Set k:=k+ 1.

If it is not easy to evaluate || Q;||> in practice, then we may turn to consider replacing it with | Q| - || Qllx as

an alternative. In practical implementations, we usually calculate
A= 300 10il1 1 Qillos/(Br) + 1/ (et 1),
A= min{|| Q1111 Qilloo/@etr), - .., 1Qulli 1 Qnlloo/ (Getn), 1/ (et 41)}
and then we may choose
B=kA+107°4", «=>1. 1)
In Algorithm 1, there are sub-problems (cf. (15) and (18)) of the following type
(al + A)(x) > w.
Now we discuss how to solve it. (i) If A is further linear, then we may use Matlab solver via
x=(al +A)\ w. (22)

(i) If A := V[ is the gradient of some continuously differentiable convex function f, then we may resort to
quasi-Newton method with novel conditions using gradient only to locate steplength; see [22, Sect. 5.3]. (iii) If
A := F is continuously differentiable, then we may use some Newton-type method to solve this sub-problem. In
(15), there are af € A;(x¥), i =1,...,n. If k = 0, then each a is chosen from the set A;(x?), as stated above. If
k > 0, then we shall make use of (20) to calculate each af“, and the computational cost is tiny.

In Algorithm 1, there is also sub-problem (16) of the following type
(!l 4+ B)(y) > p.
For (16), if B is taken to be the differential of the indictor function of some closed convex set C, then it becomes

-k _ k _k
Xy = Pe(ony1 X, +u").
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Of course, if C is taken to be R, = {x € R" : x > 0}, then it further reduces to
—k k —k
%y =max {0, apixy, +ut},

where 0 is n-dimensional zero vector. In particular, in the case of C = {0}, we always have )Ef = 0.

4. Weak convergence

In this section, we analyze convergence properties of the primal sequence and the dual sequence generated by
Algorithm 1. Under the weakest possible assumptions, we prove the former’s weak convergence to a solution of
the problem (1).

To simplify the proof of our main theorem, we introduce the following lemma, which is new and extends a result
in the proof of [12] from n = 1 to general cases.

Lemma 2. Fori = 1,...,n, let Q; : H; — G be nonzero bounded linear operators, and let o; > 0. If
Bi > 11Q:11>/(4a;), then the following

S (el 1 + (Qixiv u) + Billull?)
1., _
Z 520 (af +np; — V/nll Qill? + (i — nﬁi>2) (x> +n~ ul?)
holds for all x; € H; and all u € G.

Very recently, such a nice result was used in [3,6].

Lemma 3. Consider any maximal monotone operator T : H — H. Assume that the sequence {w*} in H converges
weakly to w, and the sequence {s*} on domT converges strongly to s. If T(w*) 3 s* for all k, then the relation
T (w) > s must hold.

Theorem 1. Let {xik Y@ =1,...,n4 1), {u*} be the sequences generated by Algorithm 1. If Assumption 1 holds
and B =Y " Bi and

112 1
,3,~>M,i=l,...,n, Bus1 > , (23)
4o 4041
then there exists some positive number y such that
't — w?
k 2 _ 5 +ly k _ =kg2 k_ =ky2
<l = w2 = p (S ek — B+ = a)2) (24)

where w is defined in (11).

Proof. Fori =1,...,n, it follows from (15) that

T ok kK =k k e
Ai(X) 3 i (xj —X;) —a; — Qju",

i
which, together with (5)

Ai(xi*) > —al — Qfu”,
and monotonicity of each A;, imply

0 < (xf —x7, o;(xf — X5 — (af —a}) — QF(@* — u™))

i
= (&F —x, o (xf — x5 — (af —a)))
— (& —xf, QF@* —u"))
= (xf —x — (xf = X0, oi(xf — %) = (af —a}))
— (& —x, Qr@* —u").
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Rearranging all terms yields

(ixf +af — (@xf +af), xf — &) = (Qi(xf — x)), " —u*)
> o |lxF — T2 + (k- x7, a,-k —a)
> olxf — 312, (25)

where the last inequality follows from monotonicity of each A;.
It follows from (16) that

BGEE ) 3 e (68, — 35, )+ ik,
which, together with (6)
B(x

n+1) > M*,

and monotonicity of B, imply
0 < (Fnyy — Xy Cupt (X — Xy )+t — )
= ()E;Ifﬂ — X1 an+1(x,]1‘+1 _)Erlfﬂ))
+ (721];4—1 - x:+1v it — u*)
= <x:tc+1 - x;1k+l - (XS-H _i:];-f-l)’ an+1(xnk+1 - if,+1)>
+ <ir]§+1 = Xpi1s it —u).
Rearranging all terms yields
(xsﬂ — X1 an+1(x§+1 - )ESH)) + ()E:H — Xy, U —u")
= Oyt ||x,11{+1 - X,If.;_l ||2
Combining this with (25) yields
Yt +af = (@ixf +a)), xf = i)
+ <xr/f+1 — Xyt Ofn+1(x;/1{+1 - frlf+1)> - Z?Ll(Qi@k —x), it —u*)
> Y el = 5P
which, together with Z?;rll Qix} = q (see (7) and (12)), implies
S lext +af — (aixf +al), xF—xF)
+ <xr]f+1 = Xpi1s Olﬂﬂ(xr]:Jrl n+1) Z,nj]l —q, u" —u")

1 k =k 2
> Z:lil Ol,'||xl- —X; I,

namely
Yo a,x —i—a — (a;x] +al), xf —)E{‘)
+ '~ = Ok +q> + <an+1<x’;+1 =) X~ Eap)
> Vit ||x{‘ = E 1P = (0 0ixf — g, uf =),
which can be rewritten as
(W' —w*, d) = ¢x, (26)

where w and d are defined in (11).
On the other hand, by (19) and (26), we get

||wk+1 _ w*”Z
k k2
= [w" —w* — pd”||
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= [w* — w*|]* = 2y (w* — w*, d*) + 214"
= lw* — w*)* = 2y (w* —w*, d") + vl
< llw* — w*|* = 2yi + viex,
which, together with (17), implies
lw " = w*)? < Jw* — w*|I> = 2 — Ok @7
Since
X — 21 Qi + g
=Xy — i @il g E — X 4 2 Qilxf — X)

= ﬂ(uk _ ﬁk) + )_c,]fH — xﬁH + Z;’lei(xlk _ );[k) 28)
and B := Y7 B; (see Theorem 1), it follows from Lemma 2 that
of
= Yo |k — T2 4 Bllut — @2 + zn+1 ok — 5,k — by
= Zn+l (Oli”x,k - )E,k”z + (Q,‘()Ci - xik), u — ) + Zn+1ﬂl ”u I/_tk”Z

Z”“ (IIxf = %502 4+ 4+ D7 — a*)1%)

(a,- + 1+ DB =+ DIQIP + (@ — 1+ DAY

and the conditions (23) indicate that each

1
5 (@ + @+ 1 = Vo + DIQIP + (@ — n+ DB)?)

2
must be positive. Let p be their minimum. Thus, we further get
o = p (S0 Ik — B2+t — )12). 29)

Meanwhile, we get

(%3
= Y1 ot = TP+ 1%, — X QX + gl
= Ytk = 2P+ 1Bt — i) + X0 0 — 2D
< Y = &P 4 (B + 2 1QP) (e — 1> + i ek — 55117)
< (1482 +20i7) (i Ik — =517 + e = a*)1%) .
Thus, we can conclude that
Op >0
1482+ 30410112
Combining this with (27) and (29) yields the desired result. [

(30)

Vi = 001/ >

Note that, the relation (30) tells us that the sequence {y;} has a positive lower bound, which is a desirable
property and is beneficial to numerical stability.

Theorem 2. Assume that Assumption | holds. Let {xf Ji =1,...,n+ 1), {uX} be the sequences generated by
Algorithm 1, respectively. If the conditions (23) hold, then the corresponding primal sequences {x{‘}(i =1,...,n)
weakly converge to a solution of system of monotone inclusions (1) mentioned above.
Proof. It follows from (24) that
i) xF—xf—>0,i=1,....,n+1, v —i" >0 (3D
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(i) {(xf, ad)}, {xk ), {u*} are bounded in norm (32)

fori=1,...,n.
Next, we will make use of Lemma 3 to prove the remaining part. To this end, we follow the definition of the
set T to get

T()_Cks ak’ 0(,1+1(X::+1 - )_Cy]:Jr]) + ’Zk)
AiGGE) + af + O (g (k= 5 )+ i)

A7 af) - &

BN a1 (. — X)) + i) — 3L, Qi 44
Meanwhile, by (15) and (16), we further have
AiE) +af + Qf (@i (i — Ty ) + )
> i(x = &) = af — Q" + ai + Qf (n 1 (g — Fyyy) + )
= o (xf = 5) + Q1 OF (g — Fypy)
and
B~ (anﬂ(x:H - )_‘r]:Jrl) + ﬁk) - X Q,-)_cf +q
> Xy — Lin Qi +4.
respectively. So, the set
TG, b, e (b, — %5, ) + i)

includes

Oli(x,k - Jz,k) + Ot Q;k(xy]:-;-l - iﬁ-&-l)

kK =k
Xi =X

Typ = 2izy Qi%f +q
which strongly converges to zero due to (28) and (31) and boundedness of each Q;. On the other hand, we shall

check weak convergence of each of the involved sequences. In fact, according to (32), there exists one weak cluster
point such that

(xFiabiy = (x*,a%), uh — u®™,
which, together with (31), implies

=k

ki~ x>®, gk

, k; _k; L

b= aoo7 an+l(xn{H - xn{H) + ukj —u™.

So, we can conclude that this cluster point solves 0 € T (x, a, u) as desired and solves the problem (1) as well. The
proof of uniqueness of weak cluster point is standard, see [5,19] for more details. [J

Here we would like to stress that, one important contribution of this article is that we prove weak convergence
of Algorithm 1 by developing more self-contained and less convoluted techniques. In essence, our proof is not a
simple generalization since tendency of |[w* — w*| to zero is required in the proof of [9]. It is well known [8]
that this tendency to zero may fail to hold for the proximal point algorithm (and the resulting splitting methods) in
infinite-dimensional Hilbert spaces.
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5. Special cases

In this section, we discuss several important cases of Algorithm 1.

5.1. Case 1

In the n = 1 case, the system of monotone inclusions (1) becomes the following monotone inclusion
0 € A(x)+ A(x) + Q*B(Qx — q). (33)
Assume that ¢ # domA C domA, @ # domB. In this case, Algorithm 1 reduces to

Algorithm 2.

Step 0. Choose x° € H, a® € A(x?), y°* € G, u® € G. Choose « > 0, & > 0 and 6 < (0, 2). Set k := 0.
Step 1. Choose g satisfying

B > 1Q17/(4ar) +1/(4d).
For xf € H, a* € A(x*), y* € G, u* € G. Compute
i =u' — (" = 0x" +q)/8B,
(@l + A)E") 3 axt — d — 0%k,
@I + B)G%) 3 ay* + i*.
If some stopping criterion is met, then stop. Otherwise, compute
=t — 7+ (5 — 07 +q, ut i),
o =k = TP+ 150 - 07 + g%,
Y =00/ Pr-
Step 2. Compute in order
(al + A 3 axk +a* — yk(xk — x5,
ay = ayt — (" -39,
W =t — (- 07 + ),
atl = ot(xk — x4k — j/k(xk — 5.

Set k:=k+ 1.
5.2. Case 2

If we further assume that B, Q, g vanish, then (33) reduces to
0e A(x) + A(x). (34)

Thus, Algorithm 2 becomes

Algorithm 3. A special case of Algorithm 2, i.e., Douglas—Rachford splitting method in [5]

Step 0. Choose x% e H, @ > 0. Choose 6 < (0, 2). Set k := 0.
Step 1. For x* € H, a* € A(x*). Compute

(al + A)F) 5 axk —d*.
Step 2. Compute
(af + A 5 axt + af — a(x* — 55).

Set k:=k+ 1.
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Obviously, if A vanishes and # = 1, then Algorithm 3 reduces to
(af + A 5 axt.

This is nothing but the aforementioned proximal point algorithm.
5.3. Case 3

When B is the sub-differential of the indicator function of the singleton set {0}. In this case, the system of
monotone inclusions (1) becomes

0ec Ai(x)+A(x)+Qfu, i =1,...,n, (35)
0= Z?:] Qixi —dq. (36)

Meanwhile, Assumption 1 indicates that it has at least one solution. Thus, Algorithm 1 correspondingly reduces to
the following Algorithm 4, which is particularly useful in practice.

Algorithm 4. A special case of Algorithm 1, used for solving (35)—(36)

Step 0. Choose x% e H, o > 0. Choose 6 € (0, 2). Set k := 0.
Step 1. Choose S satisfying

B> i 1Qil7/(4a).
For x¥ € H;, a¥ € A;(x*), i =1,...,n, u* € G. Compute in order
i =ut — (=3, 0ix{ +q)/B. 37)
(] +ADGED 3 apxf —ak — Qrid.
If some stopping criterion is met, stop. Otherwise, compute
Yoinillxy = X2+ (=3 Qi + g ut — )
Yol = EP A= L 0iF +al?

Step 2. Compute in order

k=10

(@I + AN s aixf +af —nxf —3), i=1,....n,
W =t — (=300 0iE + ),
at = o (xf =Y +af -k =35, i=1,...,n

Set k=k+1.

In practical implementations, we usually calculate

A= 301Qi 1 Qilloe /(i)
A" = min{|| Q11 Qilleo/@etr), - .., [1Qulli 11 Qnlloo/ (4et)}

and then by our numerical experience choose
B=kA+107°4", k=>1 (38)

to guarantee the method’s efficiency since it eventually satisfies the condition (13).

5.4. Case 4

Notice that a special case of (35)—(36) is optimality conditions of the following convex minimization problem

minimize Y ._, fi(x;),
subject to >0 Qixi =q, x; € Xi, i=1,...,n, (39)
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where, for i = 1,...,n, f; is a closed, proper and convex function from R" to R, Q; is an m-by-n; matrix and
Q! is its transpose, ¢ € R™, and AX; is a nonempty closed convex set in R"i.
In this case, once we set

A =038y, A=2dfi
and we further follow [9] to require the involved parameters to satisfy
B=a, a=a i=1...,n a>/nmax{|Q::i=1,...,n}, (40)

Algorithm 4 reduces to

Algorithm 5. A special case of Algorithm 4

Step 0. Choose x% e H, & > 0. Choose 6 € (0, 2). Set k := 0.
Step 1. For x¥ € H;, af € 3fi(x*), i =1,...,n, u* € G. Compute in order

—k k k ~
ut=ut = (=30, 0ix; +q)/a,
X = Py(ax! —af — QFil").
If some stopping criterion is met, stop. Otherwise, compute
Sl — 2P 4 (=3, 0k + g, uk — i)
Sl = FEIP A+ 1 = X 0ixf + g1

Step 2. Compute in order

vk =10

@I+ 3f) ity s axt +af — k=35, i=1,...,n,

W = — (=21, 0k + q),

alf‘“ = &(x{‘ —xikﬂ)—i-afc — yk(x{‘ —)Z{‘), i=1,...,n.
Set k:=k+ 1.

Algorithm 5 is actually an equivalent version of the algorithm proposed by He and Han [9]. In practical
implementations, we may choose

p=c;=a=10001 max {VulQIQ/T=}. i=1.....n. (4D

-l

6. Relations to other splitting methods

In this section, we compare our suggested splitting methods with other ones, which are well suited for solving
general monotone inclusion (1). For simplicity, we only consider Euclidean spaces.
Consider the following monotone inclusion

0€ Ax +0.5L] Bi(L1x —r1) + 0.5LY Bo(Lax —1r2) &

0 €2Ax + L] Bi(Lix —r)) + LY By(Lox — 1),
where A : R" = R", By : RP = R? and B, : R? = R? are maximal monotone, L; : R" — RP? and
L, : R" — RY are linear, and r| € R?, r, € RY.

A splitting method for this monotone inclusion, due to Vii [21] and Condat [1], can be stated as follows.
Algorithm 6.
Step 0. Choose x° € R", v) € R?, v) € RY. Choose positive numbers 7, o1, 02 such that
ol LiIP + o2l Lo))* < 277"
Set k := 0.
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Step 1. Compute

PF =T+ tA) ' (x* —0.50(LT vk + LTvky),
yk — 2pk _ xk'

Choose A, € [0.01, 1.99] and compute
xk+1 — xk +)‘-k(pk _ Xk),
v = v + a4+ o BT f 4 oi(Liy* — ) — Ao
U = 08 + (I 4+ 02BN 4 0a(Lay* — 1)) — Mgvh.

Setk:=k+1.

Note that the following Moreau identity
—1y-1 [
({+0oB)y wy=u—-o(l+—-B) (=), o>0.
o o

is useful.
Consider the following monotone inclusion

0€ G| A1G1z+ Gy AyGaz + Asz,
where A} : RP = RP, A, : R? = RY and A3 : R" == R" are maximal monotone, G; : R" — R? and

G, : R" — 'R? are linear. Under suitable assumptions, it becomes
0= erl + G2Tw2 =+ ws,
w; € A]G]Z, wy € A2G2Z, w3 € A3Z.

A splitting method of [11, Algorithm 1] for this monotone inclusion, due to Johnstone and Eckstein, reads

Algorithm 7.

Step 0. Choose z' € R", w! = (w}, wi, whT, wl e R?, w) € RY, w} € R". Choose x! € R”, xJ € RY, x) €
R* Choose 0 <a; <1, p; >0, i=1,2,3and y > 0. Set k := 1.
Step 1. For i =1, 2, 3, compute
tf =1 —a)xf ™ +0;Giz* + pwf,
xE =+ p AN @h, v =p7t Ak —xh.
Calculate
u]f = x{‘ — G1x§, ué = xIZ‘ — szé‘, vk = GlTy{‘ + G2Ty§ +y§.

If == ||u¥)|> + ¥~ '|v¥||> > 0, then compute

P25, why = (25, 0F) 4+ (k) + (wh, Wby — [, yE) 4 (o, 8 4+ (o, 6L

Let 7, = nlk max{0, ¢(z*, w*)}, and go to Step 2. Otherwise, stop.
Step 2. Compute

k1 _ k 1k k+1 k k
M= —y gk, wit = wl — g,
K+l _ ok k K+l _ T, k+l T, k+l
Wy, = wy — Ty, wy =-—Giw;T —Gyw," .
Set k .=k + 1.

Be aware that Algorithms Algorithm 2, Algorithm 6, Algorithm 7 share a common feature: At each iteration,
the resolvent of each operator has to be computed once.
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7. Rudimentary experiments

In this section, we confirmed practical usefulness of Algorithm 1, together with its special cases. In our writing
style, rather than striving for maximal test problems, we tried to make the basic ideas and techniques as clear as
possible.

All numerical experiments were run in MATLAB R2020a(9.8.0) with 64-bit (win64) on a desktop computer with
an Intel(R) Core(TM) i5-7400 CPU 3.00 GHz and 8.00 GB of RAM. The operating system is Windows 10.

VC splitting: The splitting method due to Vi [21] and Condat [1], i.e., Algorithm 6.

He-Han: The aforementioned equivalent version of the algorithm proposed by He and Han [9], i.e., Algorithm 5.

Extended Splitting: An extended splitting method of [4, Algorithm 3.1], which is designed for solving (1) with
n =1 but A being further assumed to be inverse strongly monotone.

JE splitting: The splitting method of [11, Algorithm 1] due to Johnstone and Eckstein, i.e., Algorithm 7.

Our first test problem is to solve the following convex minimization with linear constraints

minimize Y _, ?|x;| + %xiz, subject to >/, Q;x; = ¢,
where 0 > 0, Q; € R™, i = 1,...,n are randomly-generated sparse vectors, with each entry being in the
interval (—1,1). We set ¢ = Y »_;Q;Y +_, so as to guarantee that this problem has at least one feasible point
{1,....,nr erm.
This test problem can be rewritten as

minimize f(x)+ f(x), subjectto Qx =g,
where Q :=[0y, ..., Q,] and

_ 1
foy =YY", f@x):= Enxnz.

Obviously, this feasible point above satisfies (10).
The resulting optimality conditions correspond to (35) with

Ai()=03]-], Aix;):=x;, B=2ad).

In practical implementations, we chose n = 500, m = 10 and ¥ = 100 (be aware that ¢ shall be large so as to
emphasize the role of ) »_, |x;| in the objective function). Furthermore, for Algorithm 2, we set

~k ._ Lk k _k
X o=x; —(a; + Qju")/ay,

and got

(@I +ADGED 2 X = =T +o7 AT @)
Thus, we further got

=T 4790 )7E) = sgnE) max {|5]] — o ', 0},

where the term on the righthand side is the so-called soft shrinkage function.
For Algorithm 4, we chose & = 1.9, and o; = 1 for i = 1,...,500. The primal and dual starting points were
chosen as

X0 = ones(n, 1), u’ = zeros(m, 1).

To get B, we adopted (38) with x = 1.
For VC splitting, we chose
2A=0f, Bi=1, By =098y, Li =1, ry =zeros(n, 1), L, =0, rn =gq,
where f(x):= ) /_, ?lx;|>_;_,, and we chose
=002, M=12, o0,=0.1, o,=0.1,
X0 = ones(n, 1), v? = zeros(n, 1), vg = zeros(m, 1).
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For He-Han, we made use of (41) and chose & = 1.9 for better numerical performance. Strictly speaking, this
test problem is not a special case of (39). Yet, the corresponding method refers to Algorithm 4, but with (41).
For JE splitting, we chose

A =08y, Ar=3f, As=1 G =0, Gy=1,
where f(x):=>"_, ®|x|>;_, , and we chose
7' = ones(n, 1), w} = zeros(m, 1), w% =1 * Zl,
w; =—G{*w{ —Gg*w;,
x? = zeros(m, 1), xg = zeros(n, 1), xg = zeros(n, 1),
a=1[0.9,09,09], p=I1,1,1], y =10,
To compare these algorithms, we mimic the style of [11] to introduce

fio= Yo fit) — £
k Iz
where f* is the optimal value of the objective function. To estimate it, we used the best feasible value returned by
Algorithm 4 after 900 iterations. The corresponding numerical results were reported in Figure 2, where the y-axis
was labeled as log10( fi).

Our second test problem is the following linear program:

+ 10x* —qll,

minimize 5731()51) + CITX1 + 5731()62) + CzTXZ’
subject to Q1x; + Qoxs —gq =0,
where

(& =(_57 _27 _3)T7 (&) :(1’_1)T

1 2 2 1 0 8
Q‘=<3 4 1)’ Qz:(o 1)’ ‘1=<7)‘

Notice that x* = (1.2, 0, 3.4, 0, 0)T is the exact solution.
This linear program can be rewritten as

and

minimize 8R5+(x) +c’x, subjectto Qx —q =0,

where ¢ := (=5, -2, 3,1, —-1)7, Q = [Q}., Q,]. Obviously, a feasible point (1, 0.1, 3,0.8,0.6)7 satisfies (10).
Thus, the resulting optimality conditions easily follows.
By taking

A = 0oy, Ailv) =ci, Ay = 00zz . Ax(x) = 2,
we applied Algorithm 4 to solving it. We chose
A =10.0,0", 13 =007, u”=0,0"

as the starting points and chose § = 1.4, o) = 1, ap = 2.5. To get B, we adopted (38) with x = 1.
For VC splitting, we chose

2Ax =¢, B = 38721’ B, = 94y,
Li=1, ri=zeros(5 1), L,=0, rn=gq,
and we chose
t=004, M=12, o1=1, op=1,
x0 = zeros(5, 1), v? = zeros(5, 1), vg = zeros(2, 1).
For He-Han, we made use of (41) and chose 6 = 1.4 for better numerical performance.
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For JE splitting, we chose
Aiz=c, Ay=08y, Az= 88R5+, G =1, G,=0,
and we chose
7= zeros(5, 1), wl1 =c, wé = zeros(2, 1), w; = zeros(5, 1),
x(f = zeros(5, 1), xg = zeros(2, 1), xg) = zeros(5, 1),
«=1[09,09,09], p=[1,1,1], y=10.

The corresponding numerical results were reported in Figure 2, where the y-axis was labeled as 1og10(]|x* —x*||).
Our third test problem is from [4], which is to find an x € R™ such that

0e€ Dx —d+ Q"38¢(Qx — q),
where
D = tridiag (—1 — h, 4 4+ 2h, —1),
where h .= 1/(m + 1), and
0 = [eye(m); (—1/m) x ones(1,m)]; q = [zeros(m, 1); —1/m]

and C € R™*! is the first orthant. To ensure that e; = (1,0, ...,0)7 solves it, we set d = De; in our practical
implements. Thus, the problem’s unique solution x* = e;. We chose

Ax=05(D+D")x —d, A=05D-D"), B=23ds

to match the problem (1), as done in [4]. In addition, we chose m = 1000 and
x0 = zeros(m, 1), u’ = zeros(m + 1, 1).

In practical implementations, for the parameters in Algorithm 2, we set @; = 1, o, = 1 and we first chose
0 e€{1.0,12,1.4,1.6,1.8,199}, « e{l,2}

for 12 times of trials and finally chose 6 = 1.2 and x = 2 in (21) for better numerical performance.
Be aware that, for Step 2 in Algorithm 2, we directly used Matlab solver (cf. (22)) to solve

(¢l +0.5(D — D)) x = ax* +a* — y(x* — %)
to get x**1,

For VC splitting, we chose
2Ax =0.5(D+ D")x —d, B; =0.5(D—-D"), B,=3dsc,
Ly=1, ri=zeros(im,1), L,=0Q, r=gq,
and we chose
t=05  M=14 o0,=1.6, o0,=1.6,
x0 = zeros(m, 1), v? = zeros(m, 1), vg = zeros(m + 1, 1).

For Extended Splitting, we implemented it in the same way as [4].
For JE splitting, we chose

A; =38, Axz=05D+D")z—d, A;=05D-D"),
G =0, Gy=1,
and we chose
7' = zeros(m, 1), w} = zeros(m + 1, 1),
wy =05(D+ D' —d, wy=-Gl xw| — G xw,,
x? = zeros(m + 1, 1), xg = zeros(m, 1), xg = zeros(m, 1),
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a«=1[0.9,09,09], p=I[1,1,1], y=10.

The corresponding numerical results were reported in Fig. 3, where the y-axis was labeled as log10(||x* — x*||).
Our fourth test problem is to solve the following convex minimization with linear constraints

minimize S, (x;) + Y i, fi(x;), subjectto Y . ix; =1,
where
Xi={xij:1>=x; > 1/(n(n+ 1))}, i=1,...,n, fi(x;)=x —tlnx;.
Its equivalent form is
minimize Sx(x)+ f(x), subjectto Qx =1
where Q =(1,...,n) and
X={x:1>x;,>1/nn+1)),i=1,...,n}, fx)= Z?:l fi(xi).

Obviously, a feasible point x*, with x = 1/(ni),i = 1,...,n, satisfies (10). Notice that this point is also the
unique solution.
For this test problem, its optimality conditions correspond to (35)—(36) with

Aj =08y, Ai=Vfi, Qi=i, g=1

In practical implementations, set n = 10, t = 1/(2n), 6 = 1 and

x0 = ones(n, 1), u’ = 0.

For Algorithm 4, we took each ¢; to be some value equal to or close to local Lipschitz constant of V f;, where
Vfilxi)=1—1/x;.
Since V2 filkx)) =t /xi2 (its absolute value corresponds to local Lipschitz “constant”) is no longer constant, in
practical implementations, we had to allow «; to vary from iteration to iteration. At kth iteration, we took
o < af‘ = t/()c{‘)2

as an approximation of local Lipschitz constant of V f; around x{‘ . To get B, we adopted (38) with ¥ = 1. There is
no need to worry about convergence because we can keep «; unchanged after the first finite iterations.
Be aware that, for Step 2 in Algorithm 4, in order to solve

(@] +Vf)x) = aixf +af —yxf =X, i=1,....n

k+1

to get x; 7, we consider

t

k k Kk =ky s

ocixi+1—x—=a,-xi +a; —y(x; —x;7), i=1,...,n.
i

Since it can be converted into quadratic equation with respect to the variable x; and Inx; implies that x; must be
k+1

positive, we took its unique positive root as x; ', i.e.,
. wk — 14 /(wk — 1) + 4oyt
X; = 2 s l=1,...,n,
i
k. k k kK zk
where w; = o;x; +af — ye(x; — X;).

For VC splitting, we chose
2A=Vf, By =05y, By=035q,
Li=1 ri=zeros(n,1), L,=(,...,n), rn=I1,
and we chose
1=0.02, X=10, o0,=0.1, o,=0.1,
x0 = zeros(n, 1), v? = zeros(n, 1), vg =0.
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Fig. 1. Numerical results on the first test problem.
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Fig. 2. Numerical results on the second test problem.

were chosen by (41) and & = 1 for better numerical performance.

A3 =08y, Gi=1, Gy=(,...,n),

' =ones(n, 1), wl=01-0nz", w)=0,

wy = —Gl xw| —GI xwy, xV =zeros(n,1), xJ=0,
x§ = zeros(n, 1), «=1[09,09,09], p=[1,1,1], y =10.

The corresponding numerical results were reported in Fig. 4, where the y-axis was labeled as log10(||x* — x*||).
From Figs. 1-4, we can see that all these four test problems were stably and efficiently solved by either
Algorithm 2 or Algorithm 4. Furthermore, either always outperformed other state-of-the-art algorithms in achieving
higher accuracy for the first, second and fourth. In particular, for the hardest fourth problem, it was significantly

better than other three ones.

At the end of this section, we would like to stress two points. One is that Algorithm 1, together with its special
case, has a nice feature: take full advantage of separable structures so that each subproblem is easier to solve. In
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Fig. 4. Numerical results on the fourth test problem.

contrast, the classical augmented Lagrangian method does not have such a nice feature; see [9] for more details.
The other is that Algorithm 1 is originally designed for solving more general monotone inclusions (1) than [2-6,10].
So, we have no intension to make numerical comparisons among these algorithms.

8. Conclusions

In this article, we have considered the problem of finding a zero of separable systems of monotone inclusions
in real Hilbert spaces, and we have suggested a splitting method, which can be viewed as a powerful extension
of the classical Douglas—Rachford splitting. Furthermore, under the weakest possible assumptions, we have proven
its weak convergence by invoking more self-contained and less convoluted techniques. Impressively, our suggested
splitting method inherits an appealing feature of the classical Douglas—Rachford splitting method: the involved
scaling factors can be any given positive numbers, respectively. Furthermore, we have done numerical experiments
to confirm practical usefulness of this method, together with its special cases, in solving our test problems of
separable structure.
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