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Abstract

In this article, we consider the problem of finding zeros of monotone inclusions of three
operators in real Hilbert spaces, where the first operator’s inverse is strongly monotone and the
third is linearly composed, and we suggest an extended splitting method. This method allows
relative errors and is capable of decoupling the third operator from linear composition operator
well. At each iteration, the first operator can be processed with just a single forward step, and
the other two need individual computations of the resolvents. If the first operator vanishes
and linear composition operator is the identity one, then it coincides with a known method.
Under the weakest possible conditions, we prove its weak convergence of the generated
primal sequence of the iterates by developing a more self-contained and less convoluted
techniques. Our suggested method contains one parameter. When it is taken to be either zero
or two, our suggested method has interesting relations to existing methods. Furthermore,
we did numerical experiments to confirm its efficiency and robustness, compared with other
state-of-the-art methods.
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1 Introduction

Let H, G be infinite-dimensional Hilbert spaces. In this article, we are mainly concerned with
the following problem of finding an x in H such that

0eCx)+ AKx)+ O*B(0x — q), )]

where the inverse C~! of the operator C : H — 7 is strongly monotone, A : H = M and
B : G = G are maximal monotone, and Q : H — G is nonzero bounded linear with its
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adjoint Q*, and ¢ € G. Throughout this article, the problem’s solution set is always assumed
to be nonempty.

As shown in [1,2], the monotone inclusion above provides a simple but powerful frame-
work of reformulating practical problems. In particular, it includes convex minimization
problems, complementarity problems, monotone variational inequality problems and so on.

A simplified form of the monotone inclusion above is the following problem of finding
an x € H such that

0 € A(x) + B(x). 2)

To date, there have been three main splitting methods for solving this monotone inclusion of
two operators. The first one is the forward-backward splitting method [3,4], whose recursive
formula (in the case of A being single-valued) reads

_xk+] = (I —+ kaB)_](xk - MkA(xk))’

where . > 0. Its weak convergence can be proved either A~! is strongly monotone [5,6] or
both A is Lipschitz continuous and monotone and A + B is strongly monotone [7] provided
that the steplength is limited to some conservative constant. Since these assumptions are
rather restrictive, one may resort to the second splitting method [3] proposed in the year 1979

=+ pa)ED,

YW=+t =,
= gk oy k — yh,

where i > 0 is scaling factor and the parameter y € (0, 2). Lions and Mercier [3] analyzed
weak convergence of the auxiliary sequence {zF} and [8] proved weak convergence of the
main sequence {x} to the solution point of the problem (2) above. In the y = 1 case, Lions
and Mercier [3] called it the Douglas—Rachford algorithm. This is because it has its root in the
alternating-direction implicit iterative method for solving special systems of linear equations,
due to the work of Douglas and Rachford [9] in the year 1956. Sometimes it is called “the
Douglas—Rachford splitting method” and this is even used for the case where y € (0, 2). In
the forbidden case of y = 2, it corresponds to the Peaceman—Rachford algorithm [10]. The
third one is Tseng’s splitting method [1] proposed in the year 2000

Vo= (I + e B) K = i AGR)),
A = 3k g AR + A,

where p; > 0. If the forward operator A is (locally) Lipschitz continuous and monotone and
the backward operator B is maximal monotone, and if j4x is chosen in some proper way, then
its weak convergence can be guaranteed. For a practical relaxed version, we refer to [11] for
detailed discussions. If A is further linear, then the interested reader may see [12] (i.e., [13,
Algorithm 3.0]) for a first full splitting method.

Note that, in the context of the three dominating splitting methods just mentioned above,
the scaling factors for A and B are identical. Desirably, the method of [14, Algorithm 2]
overcomes this issue by turning to solve prima-dual system of the primal problem (2)

()65 G+ (5 ) ()
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where (x, u) is the primal-dual variable. Choose ¢ € R, for the current primal-dual iterate
(xk, uk), compute

yE = (@l + A axk —ub),
= (1 = nxk 4 1yt
vk = (BI + B)"1(BY* + ub),

where ¢ > 0 and B > 0 are the scaling factors. Then, make use of all these information to
update the current iterate (x*, u*) to get the new one, respectively. While the weak conver-
gence of most splitting methods is obtained by either using a fixed-point approach (e.g. [3])
or introducing an appropriate descent direction (e.g. [8]), the method of [14, Algorithm 2]
is designed and analyzed as a different way to create a sequence of separating hyperplanes
between the current iterate and the primal-dual solution set. For other discussions of the
iterative schemes of primal-dual systems, the reader may consult [1,2,12,13,15-20].

In this article, we aim at extending the method of [14, Algorithm 2] for solving monotone
inclusions from two operators to three ones. For our extended splitting method, its main
recursive formulae are as follows. Choose ¢ € R, for the current primal-dual iterate (xk, uk ),
compute

¥ = (@l + A axk — c(b) — 0*ub,
9= (1 = HxF + 1k,
v = (B1 + B)H(BOF — ) +ub),

where o > 0 and B8 > 0 are the scaling factors. Then, we construct
= (at* = H + 0% (03" —q = v5), v = 0y +4)

and confirm that it can serve as a descent direction of || (x, u) — (x*, u*)||? at the current iterate,
if the primal-dual solution point is unknown. Finally, by developing a more self-contained and
less convoluted techniques, we prove weak convergence of our suggested splitting method.

On the one hand, when C vanishes and Qx — g corresponds to the identity map, the main
iterative formulae of our suggested splitting method coincide with the ones in [14, Algorithm
2]. Thus it can be viewed as an extension of their method. Be aware that our extension
is of linear composition and is certainly different from [16], where a general algorithmic
framework for finding a zero of the sum of n > 3 maximal monotone operators over a real
Hilbert space was proposed, without first reducing the problem to some appropriate monotone
inclusions of two operators.

On the other hand, when ¢ = 2, our suggested splitting method is much like the method
of [21,22], whose main iterative formulae include:

¥ = (@l + A Naxt - k) - 0*ub),

§F iz ok — ik,

o=+ BB THBQF — @) +ub).
Yet, the descent direction there is (xk — yk Juk — vk) and thus is widely different. Moreover,
our assumptions on the scaling factors are by far weaker than their ones; see Sect. 5 for more

details. For very recent discussions of splitting methods for the monotone inclusions of three
operators when linear composition reduces to identity, we refer to [20,23,24], to cite a few.
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Notice that, our suggested splitting method shares a nice property with the method of
[21,22]: decouple the third operator B from linear composition operator Q well. Therefore,
each can solve the problem such as (1) in a practically efficient way. Furthermore, it allows
relative errors as done in [ 16]. In contrast. the method of [21,22] requires absolutely summable
errors.

The rest of this article is organized as follows. In Sect. 2, we give some useful concepts
and preliminary results. In Sect. 3, we fully state our suggested splitting method in Hilbert
spaces. In Sect. 4, under the weakest possible conditions, we prove its weak convergence of
the generated primal sequence of the iterates. In particular, our proof is different from the
proceeding ones [14,21,25]. In Sect. 5, we discuss the relations of our suggested splitting
method to some existing ones. In In Sect. 6, we did numerical experiments to confirm the
method’s efficiency and robustness for our test problems, compared with some state-of-the-art
methods [21,22]. In Sect. 7, we close this article by some concluding remarks.

2 Preliminary results

In this section, we first give some basic definitions and then provide some auxiliary results
for later use.

Let H be an infinite-dimensional Hilbert space, in which (x, y) stands for the usual inner
product and || x|| := +/(x, x) for the induced norm for any x, y € H. I stands for the identity
operator, i.e., Ix = x for all x € H. Let T : H = H be a possibly multi-valued operator.
domT stands for the effective domain of 7', i.e., dom7 := {x € H : Tx # (}.

Definition 2.1 Let 7 : H — H be a single-valued operator. If there exists some constant
number « > 0 such that

IT@x) =TI <«llx—yl, Vx,yeH,

then T is called k-Lipschitz continuous.

To concisely give the following definition, we agree on that the notation (x, w) € T and
x € H, w € T(x) have the same meaning. Moreover, w € Tx if and only if x € T 1w,
where 7! stands for the inverse of 7.

Definition 2.2 Let T : H = H be an operator. It is called monotone if and only if
x—x', w—w)>0, Vx,w)eT, V&, w)eT;

maximal monotone if and only if it is monotone and for given € H and w € H the following
implication relation holds

x—X, w—w)>0, YVx,w)eT = (x,w)eT.

Definition 2.3 Let 7 : H = H be an operator. It is called p-strongly monotone if and only
if there exists i > 0 such that

(x—x, w—w)>pulx —x°  Va,w)eT, V', w)eT.

Definition 2.4 Let C : H — M be an operator. C ! is called c-strongly monotone if there
exists some ¢ > 0 such that

(x =y, C(x) = C(y) = c|Cx) = CMI*, Vx, y € H.
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In particular, if C(x) = Mx + g, where M is an n X n positive semi-definite matrix and g
is an n-dimensional vector, then

(x, Mx) > 2=L |Mx||>, Vx e R",

max

where Amax is the largest eigenvalue of M.

Notice that Definition 2.4 is an instance of the celebrated Baillon-Haddad theorem (cf.
[26, Remark 3.5.2]). Sometimes, we also call that the operator C given in this definition is
c-cocoercive or c-inverse strongly monotone. In this case, C must be Lipschitz continuous
and monotone.

Definition 2.5 Let f : H — (—00, +00] be a closed proper convex function. Then for any
given x € H the sub-differential of f at x is defined by

ofx)y={seH: f(y)— f(x)>(s,y—x), Vy € H}.

Each s is called a sub-gradient of f atx. Moreover, if f is further continuously differentiable,
then 0 f (x) = {V f(x)}, where V f(x) is the gradient of f at x.

As is well known, the sub-differential of any closed proper convex function in an infinite-
dimensional Hilbert space is maximal monotone as well. An example is the following
indicator function

0, ifxeC,

be(x) = {—i—oo, ifx ¢C.

where C is some nonempty closed convex set in H, and its sub-differential must be closed,
proper convex. Furthermore, for any given positive number A > 0, we have Pc = (I +
198¢)~ !, where Pe is usual projection onto C.

For any given maximal monotone operator 7 : H =2 H, it is Minty [27] who proved that
there must exist a unique y € H such that (/ + AT)(y) > x for all x € H and A > 0. This
implies that the corresponding operator (I + A7)~!, known as the resolvent operator with
respect to 7' for any given A > 0, is single-valued.

For any given maximal monotone operator 7 : H = H, there are other related properties.
(i) For all x € H, the set T (x) must be either empty or nonempty closed convex; see [28,
Proposition 3, §6.7]. (ii) The solution set {x : 0 € T'(x)} is either empty or nonempty closed
convex.

An important instance of the problem (1) above is

C:=Vh, A=3f, B=ag,

where h, f : H — (—o00, +0o0], g : G — (—00, +00] are closed proper convex functions,
and Vh is assumed to be Lipschitz continuous. Under suitable conditions, (1) corresponds
to optimality condition of the following convex minimization

min h(x) + f(x) + g(Qx — q). 3)
xeH
Note that the problem (1) results in the associated Kuhn-Tucker set
Z:={(x,u) € (H,G): —Q"u € C(x) + A(x), Qx—qeB'w) }, )

where (x, u) is called primal-dual variable. Next, we will show that such a set must be closed
convex according to the following Lemma 2.1.
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Lemma 2.1 Let A, B, L be operators defined in the problem (1). Then the resulting operator
by Attouch-Thera duality principle

_(C+A O X 0 O*\ (x 0
rewn= (5" ) () (2 )0)HQ) e
must be maximal monotone.

Proof Note that both C + A and B are maximal monotone. Thus, the first operator on the
right-hand side must be maximal monotone. Meanwhile, the linearity of Q means that the
second must be maximal monotone as well [27]. Maximality of 7' follows from [29, Theorem
1]. O

Although Lemma 2.1 is a known result, we would like to follow [30, Proposition 2] or
[31, Corollary 4.2] to give such a short proof for completeness.

Remark 2.1 In his PhD dissertation, the author [12, Chapter 4] suggested using some splitting
methods such as [12, Algorithm 4.2.1] (i.e., [13, Algorithm 3.0]) to instead solve primal-dual
system (5) of the primal problem (1). Notice that this dissertation can be found in the author’s
Researchgate.

Next, we would like to mention the Douglas-Rachford splitting method once again. Its
main recursive formulae may be:

I+ pA) ) s 2,

(I +uB)(y") 3 2% =2,

M=k k = b,
where 1 > 0 and y € (0, 2). On the other hand, [32] suggested an equivalent version: for
known x* € H, a* € A(xk ), it has the following form

(I 4+ uB)(y*) > x* — pa*,
(I + pA)*HY) 5 3k pak — y ek — yb).

Recently, [8] proved weak convergence of the main sequence {x*} generated by the Douglas—
Rachford splitting method. Impressively, the case of y > 2 was discussed there for the first
time. In the year 2012, the author also confirmed that, if A is further Lipschitz continuous,
then the set sequence {(A + B)(y*)} asymptotically includes the origin and the speed of
inclusion is at o(1/k) in a sense. This result was first cited as [33, Theorem 2.2.4] in Zhou’s
master’s thesis, completed in March of 2012. For an explanation, we refer to the manuscript
entitled “An asymptotic inclusion speed for the Douglas—Rachford splitting method in Hilbert
spaces”, accepted by Optimization Online in December of 2014. For pertinent discussions,
we refer to [34-39] for more details.

3 Splitting methods
In this section, we will give a detailed description of our extension of the method of [14,

Algorithm 2] to solving the monotone inclusions of three operators (1). Moreover, we also
make some remarks.
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Algorithm 3.1

Step 0. Choose x° € H, u® € G,t € Rand @ € (0, 2). Calculate c. Choose o1, 02 € [0, 1)
and choose « and g such that

oa>o1+1/(4c), B> o

1 t2 2 2
4<o¢———al)>L 12" (6)
4c B — o2
Setk := 0.
Step 1. For known xk, uk, compute
(@l + A 3 axt — c ¥y — o*uk + £F, (7
o= (1= nxk vk, ®)
(BI+ B)W) 3 B(QF* — ¢) +ub + 1k, vF = 0" —q, ©9)
where £%, n* € ‘H are errors and they satisfy
IEK) < orllx® = YK, Il < o2l @ = 29 (10)

Compute yx = 011 x/t2,k, Where 11 x 12  are given by

1
= <a - @) xF = yE 112 4 o =y ER) + ploGt — 29

+(QF =25, n*)y — 18O (R — yh), 0k = b))
Id 1> + 110 — y5) 112,

2k
where d¥ is given by
d* = a(k =y + p0*0G* — ) +£F + 0"
=a(x* =y + BO* Q9" — g — ) + &5 + 0*n*.

Step 2. Compute

xk+l — xk _ ykdk (11)
W=k — 0 — V5 = b — 0 — 0yF + 9. (12)
Setk:=k+1.

Notice that, for Algorithm 3.1, one may adopt J4 <— «l, Jp < BI for the (7) and (9),
where each J is bounded linear and strongly monotone, and the iterative formulae (11) and

(12) are replaced by
okl ok dk
= - W
(5) = o) = (o 1))

where W is bounded linear and strongly monotone. Such idea was given in [40, Algorithm
2.2].

Remark 3.1 Now let us make some remarks on the condition (6). In some practical applica-
tions, the setting becomes in finite-dimensional Euclidean spaces and Q corresponds to an
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m X n matrix, say (g;;). Since it follows from [41, Sect. 2.3] that || Q|| < ¢, where ¥ is the
positive square root of

| 0 |? in the condition (6) can be replaced by ®¥2.In practice, if necessary, we may reformulate
Ox —q into (Q/¥)x —q/9,
or something like this, in some cases.

Remark 3.2 Be care of that, in Algorithm 3.1, the scaling factors and the coefficients may
vary from iteration to iteration. Yet, for notational simplicity, we fix them throughout this
article.

4 Convergence

In this section, for the primal sequence generated by Algorithm 3.1, we analyze its weak
convergence to an element of the associated solution set. Our proof techniques are different
from existing ones [14,25].

The following lemma is a well-known result, we also refer to [44] for a discussion of a
special case.

Lemma4.1  Consider any maximal monotone mapping T : 'H = 'H. Assume that the
sequence {wk} in H converges weakly to w, and the sequence {s*} on domT converges
strongly to s. If T(w*) > s for all k, then the relation T (w) > s must hold.

Lemma4.2 Let Q : H — G be nonzero, bounded and linear operator, and let > 0, t € R.
Ifd4a > 2B Q|13, then the following

(x, ax) + (u, pu) — t(Qx, pu) > ¢(a, B, 1 Q) (IIx]I* + [lull?)
holds for all x € H and all v € G, where

1
¢la. p.10) = 3 (a +B - \/(a - B2 +t2ﬂ2||Q||2) .

Proof If t+ = 0, then the assertion holds. Below we assume ¢ # 0. Since the following
inequality

L1102 |t|Be
(x, ox) + (u, Bu) — t(Qx, Pu) > (a - lx*+ (8 - - )l
holds for any positive number ¢, then taking

L _V@= B+ B0 — @~ p)

r1p
to maximize
11811211 |1 Be
njoa— , B—
2¢ 2
and thus to yield the desired relation (draw the graph of the min function!). O
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To the author’s best knowledge, Lemma 4.2 or its equivalent version was given in [14,
Sect. 3] and [23, Lemma 5.1]. Very recently, such a nice result was used in [24] and gener-
alized in the author’s manuscript entitled “A new splitting method for systems of monotone
inclusions in Hilbert spaces” in 2017.

Lemma4.3 Forany given positive numbers o > 0and 8 > 0, if C~! is c-strongly monotone
and

y=(al +A) Yax — C(x) — Q" u+§&), (13)
$=(1—1)x+1y, (14)
v=BI+B)'(BQF—q)tu+mn), vi=0z—q, (15)

then
(x=x" alx =)+ PO QG —2) +&+ Q") + (u—u*, Q(z—y))
> (a - 4—1) lx = ¥I2 + (x = 3, §) + 1O = 2> +{Q(x — ), n)
—1(Q(x —y), Q(x —2))
Proof Since there must be x*, u™* such that
—Q*u* — C(x*) € A(x*), Ox*—q e B '), (16)
it follows from (16) to (13) that
AW 2ax—y) —Cx) = Q"u+é, AW > -Ckx") - Q"u",
which, together with monotonicity of A, imply
(y=x alx —y) = (C(x) = C(x™)) = Q" (u —u*) + &) > 0. a7
Meanwhile, it follows from (16) to (15) that
B(Qz—q)>B2G —2)+u+n, B(Qx"—q)>u",
which, together with monotonicity of B, imply
(0@ —x"), BOG —2) +u—u*+n) =0.
Summing up this inequality and (17) yields
(x =x*, ax =) +BO*OG —2)+&+ Q") + (u—u*, O(z—y))

> afx = yIP 4+ (x =y, §) + BQ(x —2), 2 — 2)
+ (=2 Cx) = C(x™) +(Q(x —2),n). (18)

Next, we bound the inner product with respect to C. In fact, since C ~! is ¢-strongly monotone,
we get

(y —x%, C(x) = C(x™)
=(x -2 Cx) —CHx") — (x —y, C(x) = C(xM)

1 1
> c||C(x) — CxM|* — 5 (2—||x — ¥+ 2¢lIC(x) — C<x*)||2)
C

1 2
=g =l

Combining this with (14) and (18) yields the desired result. m]
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Theorem 4.1 Let {(x*, u*)} be the sequence of the primal-dual iterates generated by Algo-
rithm 3.1. Then {x*} weakly converges to an element of the solution to the problem (1)
whenever the condition (6) is satisfied.

Proof From Algorithm 3.1 and Lemmas 4.2 and 4.3, we have

(k= x* dby + W -t 0ER - yh))
= (F = 2% af =y + BOFOGF — M) +EF + 0" b + WF —u*, 0k —yh)

> (a - 4—lc> e = Y112+ f = 05 ES + Bl — 29IP + (et — 2, )
—1B(QG" =y, 0 =) (=1 (19)
> <a - 4—10 - 01) Ix* = ¥ + (B — o)l Q(x* — 24|
—1B(Q(" =y, 0k = 2h)
Poo) (I - out - HE), o

1
> - _
_<,0<Ol P o1, B 02,/3

where we have made use of the aforementioned relative error criteria (10).
By (11) and (12), we get

k+1 2 k k2
I = 2 = = = pd ),

e e e S UGS Ol
From these two relations, we further have
A = |2 4 bt — 2
= ok = 12 k= P = 2 (- 6 d) -, 0k - y6))
+72 (1P + 12G* = yHI7)
< I =2 = a1 = 2pen g+ 2 (14412 410G = 39)12)
= =217+ — )P = @ = O)n,

where the inequality uses (19). So, it follows from (19) to (20) and the formula for y; in
Algorithm 3.1 that

||xk+1 _x*||2 4 ”uk+1 _ M*HZ
k%2 4k k2 1 1B
< Ik =Pt =P = @ = O (@ = =01 B oo, 20
(I = IR+ ot - 912). @

Moreover, as long as (6) is satisfied, it is not difficult to confirm that yy is bounded below by
some positive number. Consequently, it follows from (21) that

(i) {(x*, u®y — (x*, u®)} converges in norm, thus ||(x¥, «*)]|| is bounded; (22)

(i) [Ix* =y = 0, QoG* =2 — o, (23)
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which, together with (10) and strong monotonicity of C~!, implies
iii) &5 — 0, "I — o,
(iv) [CGR — oI < cMixk = yo ) — o, (24)

respectively.
On the other hand, from (5), the set T(yk, B Q()?k — M+ uk+ nk) includes

(C(yk) +AOM +BO* QT — ) + 0k + Q*ﬂk>
B (BQG* 2 +uh) — 0V +q ’
which, together with (7) and (9), i.e.,
AGY 3 al(h =y —cah) — 0k 1 g,
BN BOG* — 2 +u") 3 0 g,
implies that the set T (y*, BO(H* — z¥) + u*) includes

<a(xk -y —Ccuh + b + OO —2F) +EF + Q*n")
0@k =y ‘

This is equivalent to saying that it includes

a(xk —y5 — ek + cOF) + O (Q(k — ) — 10k — yb)) + EF + 0 pF
Ok —y%) + 0k — ) '
(25)

The property above (22) tells us that {(x*, u%)} has at least one weak cluster point, say
{(x>°, u™)}.

To invoke Lemma 4.1, let us to check {8Q(* — zF) + u* + n*} and {y*} do converge
to zero in norm. In fact, since we have known that {(xk s uk)} has one weak cluster point
{(x®, u°)}, there must exist some subsequence of { (x*, u*)} such that

xKisx® ki ™ as kj — 400,

where the notation “—” stands for weak convergence. It follows from this and (23) that

ykf—\xoo, as kj — +oo.

Since the operator Q is bounded and linear and (24) holds, a similar discussion yields
BOGY — M) +ubi +nfi—u™®, as k; > +o0.

Meanwhile, by (23) and boundedness and linearity of Q, we can see that the upper part
and the lower part of (25) converge in norm strongly to zero, respectively, as k — 4-00.
Combining these facts and Lemma 4.1 implies that, if {(x°°, u®°)} is any weak cluster point
of {(x*, u*)}, then it must be zero of T. Meanwhile, the proof of uniqueness of weak cluster
point is standard [43], thus is omitted. So the whole sequence {x*} weakly converges to x>,
which is the solution to the problem (1) above. m]

Remark 4.1 For the primal sequence generated by Algorithm 3.1 addressed in real Hilbert
spaces, here we have made use of Lemmas 2.1 and 4.1 to analyze weak convergence to an
element of the primal solution set. Of course, we may invoke an alternative proof technique
[25, Proposition 2.4] as well. Yet, we feel that our approach is not only more self-contained but
is less convoluted than this other approach. Our proof techniques were originally developed
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for the earliest draft of this article at the beginning of the year 2017 and also used in the
author’s manuscript mentioned before Lemma 4.3.

5 Relations to other existing methods

In this section, we discuss relations of the above-mentioned Algorithm 3.1 to other existing
ones, when it removes errors.

5.1 Case 1

In the case of Q = I and ¢ = 0 and ¢ = 1, if C vanishes, then Algorithm 3.1 is somewhat
related to the Spingarn splitting method [15, Sect. 5], which can written as
(ul + A" 3 pt =0k, at e AGD),
(I + B)(Y") 3 uzk + 0%, b* e BOY).
1 1
= SR +yh, W = S0k b,

where 1 > 0 is the scaling factor. See [14, Sect. 4.2] for a detailed explanation of why it
turns out to be an instance of the Douglas-Rachford splitting method.

5.2 Case 2

In the case of Q = I and ¢ = 0, if C vanishes, then Algorithm 3.1 reduces to the method of
[14, Algorithm 2]. As far as the corresponding conditions on the scaling factors are concerned,
(6) becomes 4o > ﬁt2 | OI%. See the full, compact set of recursions described at the end of
[14, Sect. 3] there.

5.3 Case3

In the case of ¢ = 0, if C vanishes, then elementary calculations can indicate that Algorithm
3.11s equivalent to the one in [25, Proposition 3.5] in theory, and the latter further subsumes
[13, Algorithm 3.1].

5.4 Case4

In the case of t+ = 2, Algorithm 3.1 is reminiscent of the method proposed by Vu [21] and
Condat [22]. In our notation here, the main iterative formulae are as follows. Choose a > 0
and 8 > 0. For known xk, uk, first compute

(@ + A 3 axk — c(x¥) — 0*u*, (26)
Ph =29k — XK, (27)
(I + BB H(") 2 BQF* — q) +u*. (28)

Then, choose y € (0, 2) and compute

LAy = R by =y = R ek b,
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Obviously, (26) and (28) is the same as the counterparts of Algorithm 3.1 in the case of r = 2.
Yet, the way of updating x* to get the new iterate x**! is widely different. In addition, the
reader may resort to the following Moreau identity

I+ BB ) (w)=w— B+ %B)_l(%), VB >0, Vw e H

to check some other relations of (28) to the counterpart of Algorithm 3.1, and we will not
detail them here.
As to the convergence conditions on «, 8 and c, in the case of t = 2, we require

4(a—i)>ﬁr2uQn2 = d-BlolH > 1/c
4c

whereas their ones in [21, Theorem 3.1] and [22, Theorem 3.1] are

2min{a,ﬂ71} (l —‘/a*1,3||Q||2) >1/c

2a - BlIOIH > 1/c, (29)

(in the case of C := Vh, where h is continuously differentiable, Lipschitz constant of Vi
can take 1/c by the Baillon-Haddad theorem) respectively. Obviously, in the common case
of |Q| = 1, we have

4(a — B) > 2(a¢ — B) > 2min{e, B} (1 - \/05—71/3>

because it is easy to check

and

_M(a_g) _minfe, f71) <
= Jaatvp © P Jaa+vp

In this sense, the first is much weaker than the other two. Notice that, for the choice of y, it
is required in [21, Theorem 3.1] that y € (0, 2) whereas in [22, Theorem 3.1]

min{a, B} <1 - a*l,B> 1.

1
0<y<2- —glolH " ell,2).
C

In contrast, our choice of y4 is flexible and self-adaptive, and it can be larger than 2; see Table
1 below.

If C further vanishes, the main iterative formulae of their method [21,22] mentioned above
becomes

@l +A)(GY) 5 ax* — 0k,

P =2k =i,

(I + BB~ H(M 3 uf + B(0F* — @),
NS R y(xk _ yk)’

ukl =k y(uk . vk)’

where y € (0,2).If y = 1 and @ > B]|Q|?, then it can be viewed as a special case of the
proximal point algorithm [42,43] (also see [35,36,45—49] for further discussions) in a sense.
In contrast, Algorithm 3.1 seems beyond such framework.
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5.5 Case5

When the author was finalizing this revised version, the manuscript [20] appeared. A special
case of the problem there is optimality condition the aforementioned convex minimization
(3). The main body of the method of [20, Algorithm 1] can be stated as follows. Choose
a; € (0,1], p; > 0,i = 1,2, 3. Choose starting points x?,xg,xg, w}, w%, w% eH, ' eg.
At k-th iteration, compute in order

7= - al)x{‘_l +oygh — ,01(Cx/1‘_1 —wh), xf =1f, yf = Cxf,

= - az)x§_1 +arzk 4+ powh, (4 paA)xh 565, Y5 = @k — 5/ 0,
= (1 — a3)xy ' + a3(Q2" — q) + pawh. (I + p3B)xh = 4,

Y5 = (5 —x)/ps.

Then, compute via an appropriate way to get the new iterates. For additional conditions on
these parameters, we refer to [20, Sect. 3] for more details. Clearly, Algorithm 3.1 is different
from this method. For example, our primal starting point is x whereas their method has six
primal starting points.

6 Rudimentary numerical experiments

In this section, we implemented Algorithm 3.1 (NEW for short) to solve three test examples
to confirm its efficiency and robustness, compared with other state-of-the-art methods [21,22]
(VC for short). Since computations of the resulting resolvents are not costly due to practically
useful reformulation of these examples, we did not use error criteria for the methods. In our
writing style, rather than striving for maximal test problems, we tried to make the basic ideas
and techniques as clear as possible.

All numerical experiments were run in MATLAB R2014a (8.3.0.532) with 32-bit (win32)
on a desktop computer with an Intel(R) Core(TM) i3-2120 CPU 3.30 GHz and 2 GB of
RAM. The operating system is Windows XP Professional.

Our first test problem is to find an x € R™ such that

0€ Dx—d+ Q*38c(Qx — q),

where ¢ = (0,...,0,1/m)T € R"*+! and

b -1 1
a b —1 1
D - b Q = b
a b -1 1
1 1
a b L L
wherea == -1 —h,b:=4+2h,h:=1/(m+1),and C C R+ is the first orthant. To
ensure that e; = (1,0, ...,0)7 solves it, we set d = —De; in our practical implements. In

addition, we chose
Cx=05D+D")x—d, Ax=0.5(D—D")x

to match the problem (1).
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Fig. 1 Numerical results on the first test problem

Since ¢ = 1/6, we suggested choosing « to be around 1/¢ = 6. In practical implementa-
tions, for NEW and VC, we chose @ € {4, 6, 8, 10, 12} and

B=pla—1/¢4c), t=2, 6 =138,
B=p/3. v =138,

respectively. The reason why we adopted 8 = p/3 is: when m = 1000, ||Q|® ~ 1, the
condition in [21]

2 minfa, B} (1 —,/a—l,s||Q||2> >1/c = minfe, B} >3

implies ¢ > 3 and § < 1/3.

We adopted the stopping criterion ||x; —x*| < €|lxo — x*||. After trials, we further chose
oa=8,p=09and ¢ = 6, p = 0.5 for VC and NEW, respectively. The corresponding
numerical results were reported in Figs. 1 and 2.

From Figs. 1 and 2, we can see that NEW stably tends to achieve higher accuracy by using
less number of iterations (and more elapsed time in most cases). In particular, it can achieve
the accuracy of 10~ order that VC fails to achieve.

Below, we further studied other two test problems, where C vanishes. To make NEW
more practical, we chose op > 0 and, at k-th iteration, updated the involved scaling factor in
the following way. First calculate

) okl Xk — xk—1l
Ok = ,
|AGek) — ACg-Dl
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Fig.2 Numerical results on the first test problem

where we have assumed that A is continuous. Then, update oy via

0.9qy if ¢y > 2,
a1 = 3 Llag if g <0.5, (30)
o otherwise.

Here there is no worry about loss of convergence since it can be merely done for the first N
(say, N = 500) iterations. In addition, it remains an open problem whether or not one can
self-adaptively update the scaling factor for A when C exists as in the first test problem.

Our second test problem is monotone variational inequality problem, which is from [50]
and is a user-optimized traffic pattern for the simple network with only two nodes x, y and
five links ay, a», a3, by, by, where a1, a;, a3 are directed from x to y and by, b; are the return
of ay, a», respectively.

The travel cost function and the constraint set are given by

10 0 0 5 0 Xq, 1000
0 15 0 0 5 Xay 950
Fx)y=|0 0 20 0 O Xq; | + | 3000 31
2 0 0 20 O Xb, 1000
0o 1 0o 0 25 Xb, 1300
and
C={xeR’:x>0,x4 +Xa + Xa3 = 210, xp, + xp, = 120},
respectively.
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Table 1 Numerical results on yj in Algorithm 3.1

k 53 54 55 56 57 58 59 60

Yk 1.2852 1.4687 1.6262 1.0989 1.9726 2.0878 1.4284 2.2592

This variational inequality problem corresponds to the monotone inclusion (1) via F := A,
B is taken to be the sub-differential of the indicator function of {w € R’ : w > 0} x{(0, 0)7},
and

1 00 0 0 0
01 0 0 0 0
001 0 0 0

o=]0o 001 0], g=| o0
000 0 1 0
1110 0 210
000 1 1 120

By the way, it seems a new idea, which occurs to the author in January of 2019, of reformu-
lating the original problem into the monotone inclusion (1) under consideration. Such doing
avoids the computation of usually expensive projection on the involved constraint set.

In practical implementations, we updated F' <— F'/25 and chose the starting points as

% =(210,0,0, 120, )7, u° = zeros(7,1), 6 = 1.8

and adopted the ways of (30) to update ax. As we know, x* = (120, 90, 0, 70, SO)T is the
unique solution to the variational inequality problem above. Furthermore, by Remark 3.1,
we adopted the following preconditioning technique

9 = sqrt(norm(Q, 1) xnorm(Q" ., 1)), (Q.q) < (Q,q)/v.
After trials, we chose B = oy for both VC and NEW. Then, we continued to try
ap € {0.1,1, 10}, y €{09,1.1,1.3,1.5,1.7, 1.9}
for VC and
ap € {0.1,1,10}, # €{0,0.5,1,1.5,2,2.1}

for NEW. Finally, we further chose g = 10, y = 1.7 and og = 10, ty = 2 for VC and NEW,
respectively.

Next, we numerically checked the computed values of yx in NEW. In the case of g = 10
and r = 2, we ran NEW and the returned last values of y; were listed in Table 1.

Our third second test problem is to solve the following complementarity problem of finding
an x € R" such that

0 € Mx + 08¢(x),

where M is an n x n Hilbert matrix whose entries are
1

— L, j=0,...,n—1,
i+j+1

mi.j =

and C is the first orthant. Obviously, x* = (0, ..., 0)7 is the unique solution. The starting
point and the stopping criterion are

(n = 10) X0 = ones(n, 1), u® = zeros(n, 1),
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Fig.3 Numerical results on the second test problem
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Fig.4 Numerical results on the third test problem
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respectively. For VC, in views of ¢ = 1 and (29), we adopted

B=p—05), (= a>05), ac{08,1,5, 10},
p € {0.01,0.05,0.1,0.5, 0.9},

y=2-— i(a—,ﬂ)—‘ —0.0001. (32)
2c

For NEW, we chose 6 = 1 and adopted the way of updating o as in (30) and calculated

Bk = plog — 1/(4c)).

After trials, we chose « = 5, p = 0.05 and og = 1, p = 0.5 for VC and NEW, respectively.
The corresponding numerical results on the second and third test problems were reported
in Figs. 3 and 4, respectively, where the elapsed time using tic and toc was not listed because
it is always negligible in each case.
From Figs. 3 and 4, we can see that NEW outperformed VC clearly. Furthermore, NEW
appears more robust. In addition, for the choice of y in (32), we also tried to decrease it by
a multiple of 0.9, 0.5, 0.1 and the results were still similar.

7 Conclusions

In this article, we have considered the problem of finding zeros of monotone inclusions of
three operators in real Hilbert spaces, where the first operator’s inverse is strongly monotone
and the third is linearly composed, and we have suggested an extended splitting method,
which allows relative errors, for its primal-dual system. In theory, under the weakest possible
conditions, we have proved its weak convergence of the generated primal sequence of the
iterates by developing a more self-contained and less convoluted techniques. In practice, we
have done numerical experiments to confirm its efficiency and robustness, compared with
other state-of-the-art methods.

There are three interesting topics arising in this article. The first would be to check whether
or not it is possible to devise a practically useful way to calculate local approximation of
strongly monotone constant of C~!. The second would be to further update the scaling factor
for B in a desirable way. The third would be to follow the scheme [51] to add inertial term
to our extended splitting method. Resolving these issues are outside the scope of this article,
but we hope to address them in future research.

Acknowledgements The author is greatly indebted to two referees for their careful reading and helpful
suggestions. Special thanks go to Xiao Zhu for her help in doing numerical experiments.
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