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Abstract In this paper, we consider the proximal point algorithm for the problem
of finding zeros of any given maximal monotone operator in an infinite-dimensional
Hilbert space. For the usual distance between the origin and the operator’s value at
each iterate, we put forth a new idea to achieve a new result on the speed at which
the distance sequence tends to zero globally, provided that the problem’s solution
set is nonempty and the sequence of squares of the regularization parameters is non-
summable. We show that it is comparable to a classical result of Brézis and Lions
in general and becomes better whenever the proximal point algorithm does converge
strongly. Furthermore, we also reveal its similarity to Güler’s classical results in the
context of convex minimization in the sense of strictly convex quadratic functions,
and we discuss an application to an ε-approximation solution of the problem above.

Keywords Monotone operator · Convex minimization · Proximal point algorithm ·
Rate of convergence

1 Introduction

In this paper, we consider the problem of finding zeros of any given maximal mono-
tone operator in an infinite-dimensional Hilbert space. When the operator is taken
to be the sub-differential of a closed proper convex function, it corresponds to the
optimality condition of minimizing such a function in this space.

An iterative procedure for solving the monotone inclusion above is the proximal
point algorithm, first introduced by Martinet [1] for convex minimization and further
generalized by Rockafellar [2] to get today’s version. Rockafellar proved its global
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weak convergence by assuming that the solution set is nonempty and the sequence
of the regularization parameters has a positive lower bound. Shortly after, Brézis and
Lions [3, Proposition 8] weakened the latter assumption merely require the sequence
of squares of the regularization parameters to be nonsummable. Furthermore, for the
usual distance between the origin and the operator’s value (which corresponds to a
set!) at each iterate, they gave a speed at which the distance sequence tends to zero
globally. Later on, in the context of convex minimization, Güler [4] well studied con-
vergence behaviors of the proximal point algorithm and achieved some fundamental
results. (i) Güler [4, Sect. 5] gave an example for which the proximal point algo-
rithm fails to converge strongly. (ii) Assuming that the sequence of the regularization
parameters is nonsummable, he deduced a convergence rate of the proximal point al-
gorithm in terms of the difference of the function’s value at each iterate and its value
at a minimizer (see (8) below). Furthermore, if the sequence of the iterates does con-
verge strongly to a minimizer of the function, the corresponding convergence rate can
be improved (see (9) below).

Then, for the proximal point algorithm in the context of monotone inclusions, an
important issue is to ask whether or not the speed proposed by Brézis and Lions can
be improved whenever the proximal point algorithm does converge strongly.

In this paper, we will put forth a new idea to give a lemma (see Lemma 2.2 be-
low) and then make use of it to resolve the aforementioned issue. As a result, under
the same assumption, we achieve a new estimate (see (18) below) of the speed at
which the distance sequence tends to zero globally. As shown below, this new one is
comparable to a classical result of Brézis and Lions [3, Proposition 8] in general and
becomes better whenever the proximal point algorithm does converge strongly.

It is generally accepted that Güler’s estimates are classical results on convergence
rates of the proximal point algorithm for convex minimization. We believe that our
proposed one will play a similar role in analyzing convergence behaviors of the prox-
imal point algorithm for monotone inclusion. In fact, as demonstrated at the end of
Sect. 3, in the sense of strictly convex quadratic functions, our new estimate has been
as good as Güler’s for convex minimization.

The rest of this paper is organized as follows. In Sect. 2, we give some useful con-
cepts and preliminary results. In particular, we put forth a new idea so as to achieve
an interesting result (see Lemma 2.2 below), which plays a key role in the proof of
the main theorem. In Sect. 3, we derive the new estimate and others. Furthermore,
we reveal a remarkable similarity between our new estimate for monotone inclu-
sion and Güler’s for convex minimization. Finally, we discuss an application to an
ε-approximation solution of monotone inclusion, a notion introduced and analyzed
by Zaslavski (cf. [5]) very recently. In Sect. 4, we close this paper by some concluding
remarks.

2 Preliminary Results

In this section, we first give some basic definitions and then provide some auxiliary
results for later use.
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Let H be an infinite-dimensional Hilbert space, in which 〈x, y〉 stands for the
usual inner product and ‖x‖ := √〈x, x〉 for the induced norm for any x, y ∈ H . Let
U be a nonempty closed convex set in H . We use

| · −U | := min
{‖ · −u‖ : u ∈ U

}

to stand for the usual distance between a point and this set U .

Definition 2.1 Let f : H →] − ∞,+∞] be a closed proper convex function. Then
for any given x ∈ H the sub-differential of f at x is defined by

∂f (x) := {
s ∈ H : f (y) − f (x) ≥ 〈s, y − x〉, ∀y ∈ H

}
.

Each element s is called a sub-gradient of f at x. Moreover, if f is further con-
tinuously differentiable, then ∂f (x) = {∇f (x)}, where ∇f (x) is the gradient of f

at x.
To concisely give the following definition, we agree on that the notation (x,w) ∈ A

and x ∈ H , w ∈ A(x) have the same meaning.

Definition 2.2 Let A : H ⇒ H be an operator. It is called monotone iff

〈
x − x′,w − w′〉 ≥ 0, ∀(x,w) ∈ A, ∀(

x′,w′) ∈ A;
maximal monotone iff it is monotone and for given x̂ ∈ H and ŵ ∈ H the following
implication relation holds:

〈x − x̂,w − ŵ〉 ≥ 0, ∀(x,w) ∈ A ⇒ (x̂, ŵ) ∈ A.

As is well known, the sub-differential of any closed proper convex function in an
infinite-dimensional Hilbert space is maximal monotone as well. Furthermore, for
any given maximal monotone operator A : H ⇒ H , it is Minty [6] who proved that
there must exist a unique y ∈ H such that (I + λA)(y) � x for all x ∈ H and λ > 0,
where I stands for the identity operator, i.e., I (x) = x for all x ∈ H . This implies
that the corresponding operator (I + λA)−1 is single-valued.

For any given maximal monotone operator A : H ⇒ H , there are other related
properties. (i) For all x ∈ H , the set A(x) must be either empty or nonempty closed
convex; see [7]. (ii) The set A−1(0) := {x : 0 ∈ A(x)} is either empty or nonempty
closed convex. Therefore, for all x ∈ H , the distance between the set A(x) and the
origin is uniquely determined, and so is the distance between the set A−1(0) and the
origin.

Based on these facts, we state the problem under consideration in this paper as
follows. It is to find an x ∈ H such that

0 ∈ A(x), (1)

where A : H ⇒ H is a maximal monotone operator. Henceforth, for this monotone
inclusion, the solution set A−1(0) is always assumed to be nonempty.
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An important instance of the problem above is the optimality condition of mini-
mizing a closed proper convex function f : H →] − ∞,+∞], which reads

0 ∈ ∂f (x). (2)

An iterative procedure for solving (2) is the proximal point algorithm [1]: For any
given starting point x0 ∈ H , it recursively generates a sequence of iterates {xk} by

0 ∈ ∂f
(
xk+1) + λ−1(xk+1 − xk

)
, k = 0,1, . . . , (3)

where λ > 0 is the regularization parameter. Note that such xk+1 is also the unique
solution to the corresponding convex minimization minx∈H {f (x) + 1

2λ
‖x − xk‖2}

and called the proximal point (see Moreau [8]) of f at xk .
Replacing the sub-differential operator by a general maximal monotone operator

A : H ⇒ H , Rockafellar [2] got today’s form of the proximal point algorithm:

0 ∈ A
(
xk+1) + λ−1

k

(
xk+1 − xk

)
, k = 0,1, . . . , (4)

where λk > 0 can vary from iteration to iteration. From the result of Minty, we can
rewrite the proximal point algorithm (4) as

xk+1 = (I + λkA)−1(xk
)
, k = 0,1, . . . . (5)

In an infinite-dimensional Hilbert space, we say that the proximal point algo-
rithm does converge strongly if and only if the sequence of the iterates does converge
strongly to an element, say x∞, of the solution set in the sense of

lim
k→+∞

∥∥xk − x∞∥∥ = 0. (6)

Of course, this relation (6) will always hold in the finite-dimensional inner product
space R

n, in which there is no distinction between strong convergence and weak
convergence so that we simply say one word “convergence”.

Proposition 2.1 Let {(xk, λk)} be the sequence in the proximal point algorithm. Then
we have

∣∣A
(
xk

) − 0
∣∣2

k−1∑

i=0

λ2
i ≤ ∣∣x0 − A−1(0)

∣∣2
. (7)

In the context of convex minimization, we have

(
f

(
xk

) − minf (x)
) k−1∑

i=0

λi ≤ 1

2

∣∣x0 − A−1(0)
∣∣2

. (8)

Furthermore, if the proximal point algorithm does converge strongly, then the asso-
ciated convergence rate can be improved above to

lim
k→+∞

(
f

(
xk

) − minf (x)
) k−1∑

i=0

λi → 0, whenever lim
k→+∞

k−1∑

i=0

λi = +∞. (9)
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Note that this proposition characterizes some of the fundamental properties of
the proximal point algorithm. The inequality (7) corresponds to a classical result of
Brézis and Lions [3, Proposition 8] and the others are attributed to Güler [4].

For the proximal point algorithm (5), we refer the reader to Rockafellar [2] and
Zaslavski [9] for two different approximate versions. Furthermore, the reader may
consult [10–12] for other related discussions of convergence rates given in terms of
the closeness of the iterate to the solution set (but with some restrictive assumptions).

Very recently, Zaslavski (cf. [5]) introduced and analyzed a notion of an ε-
approximation solution of the monotone inclusion (1). It corresponds to the problem
of finding an x ∈ H such that

A(x) � w, with ‖w‖ ≤ ε.

This notion’s importance can be understood through a simple but demonstrative ex-
ample. Let us consider the problem of minimizing |x| in the space R, and the associ-
ated optimality condition is

0 ∈ ∂|x| =
{ {s : |s| ≤ 1}, if x = 0,

{x/|x|}, if x �= 0.

Since the operator A := ∂| · | is maximal monotone in the space R, this optimal-
ity condition becomes a monotone inclusion. For the latter, once we let ε < 1 (say
ε = 0.99), its ε-approximation solution must be unique and coincides with its exact
solution x∗ = 0. Since ε is not necessarily required to be small, this fact outstands
the value of the notion of an ε-approximation solution in some cases.

Now we state a lemma, which will be used in the proof of the main result of this
paper.

Lemma 2.1 Let rk := xk − (I + λkA)−1(xk) = xk − xk+1, where {(xk, λk)} is the
sequence in the proximal point algorithm. Then the sequence {λ−1

k ‖rk‖} is decreasing
and the sequence {‖rk‖} satisfies

(
2λkλ

−1
k+1 − 1

)∥∥rk+1
∥∥2 ≤ ∥∥rk

∥∥2 − ∥∥rk+1 − rk
∥∥2

. (10)

Proof In view of the notation rk = xk − (I + λkA)−1(xk), we have

xk ∈ (
xk − rk

) + λkA
(
xk − rk

) ⇔ λ−1
k rk ∈ A

(
xk − rk

)
.

Similarly, λ−1
k+1r

k+1 ∈ A(xk+1 − rk+1). Thus, it follows from A’s monotonicity that

〈
xk+1 − rk+1 − (

xk − rk
)
, λ−1

k+1r
k+1 − λ−1

k rk
〉 ≥ 0,

which, together with the equivalent iterative relation xk+1 = xk − rk , implies

〈−rk+1, λ−1
k+1r

k+1 − λ−1
k rk

〉 ≥ 0 ⇔ λkλ
−1
k+1

∥∥rk+1
∥∥2 ≤ 〈

rk+1, rk
〉
. (11)



J Optim Theory Appl

By using the identity

2
〈
rk+1, rk

〉 = ∥∥rk+1
∥∥2 + ∥∥rk

∥∥2 − ∥∥rk+1 − rk
∥∥2

,

we can further get the desired result. Meanwhile, applying the Cauchy–Schwartz
inequality to (11) yields the result that the decreasing property of {λ−1

k ‖rk‖}, equiva-
lently {‖λ−1

k (xk − xk+1)‖}. �

Note that, in the case of A being single-valued, the associated proof easily follows
from A’s monotonicity:

〈
A

(
xk+1) − A

(
xk

)
, xk+1 − xk

〉 ≥ 0

and the iterative formula xk+1 − xk = −λkA(xk+1), λk > 0. So, combining these
with the Cauchy–Schwartz inequality yields the decreasing property of {‖A(xk+1)‖},
as was done in [3].

The decreasing property of {‖λ−1
k (xk − xk+1)‖} can be viewed as an extension

of [4, Lemma 2.1] to monotone operators, and a closely related terminology is the
Yosida approximation, denoted by λ−1(x − (I + λA)−1(x)).

Obviously, from Lemma 2.1 above, we can get an abstract inequality: If A : H ⇒
H is maximal monotone, then for any given x ∈ H and x̃ = (I + λA)−1(x), the
relation

(
2λλ̃−1 − 1

)∥∥x̃ − (I + λ̃A)−1(x̃)
∥∥2

≤ ∥∥x − (I + λA)−1(x)
∥∥2 − ∥∥x̃ − (I + λ̃A)−1(x̃) − (

x − (I + λA)−1(x)
)∥∥2

holds for all λ̃ > 0 and for all λ > 0 Yet, we will not further discuss it in this paper.
Next, we give a fundamental result of characterizing interrelations of three se-

quences of positive numbers frequently arise in analysis of convergence behaviors of
some optimization methods, and it is crucial in proving the main result of this paper.
Note that, to the best of the author’s knowledge, the idea of the proof is new.

Lemma 2.2 Let {αk}, {βk}, {γk} be sequences of positive numbers. Assume that they
satisfy

α2
k+1 ≤ α2

k − βkγk, k = 0,1, . . . , (12)

the sequence {βk} is nonsummable and the sequence {γk} is decreasing. Then there
exists εk such that

γk

k∑

i=0

βi ≤ 2α0εk, (13)

αk ≤ εk ≤ α0, lim
k→+∞ εk = lim

k→+∞αk. (14)
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Proof It follows from (12) that

αi+1 ≤
√

α2
i − βiγi ≤ αi − βiγi(2αi)

−1, i = 0,1, . . . .

This is the desired recursive inequality. Summing it for i = 0,1, . . . , k and rearrang-
ing terms yield

k∑

i=0

βiγi(2αi)
−1 ≤ α0 − αk+1 ≤ α0,

which, together with the decreasing property of the sequence {γi}, implies

γk

k∑

i=0

βi(2αi)
−1 ≤ α0.

Hence, we can further get

γk

k∑

i=0

βi ≤ α0
∑k

i=0 βi
∑k

i=0 βi(2αi)−1
= 2α0

∑k
i=0 βiα

−1
i αi

∑k
i=0 βiα

−1
i

. (15)

Denote

εk :=
∑k

i=0 βiα
−1
i αi

∑k
i=0 βiα

−1
i

=
k∑

i=0

βiα
−1
i∑k

i=0 βiα
−1
i

αi .

Form the term on the right-hand side, we can see that εk must lie in the interval
[αk,α0] because the sequence {αk} is clearly decreasing and βiα

−1
i ≥ βiα

−1
0 > 0 for

i = 0,1, . . . , k. Meanwhile, for the nonnegative and decreasing sequence {αk}, its
limit must exist, and for the sequence {βkα

−1
k }, it is also nonsummable. So, we can

use the Silverman–Toeplitz theorem [13, p. 43] to conclude that {εk} and {αk} have
the same limit. The proof is complete. �

3 Main Results

In this section, we derive our new result on the proximal point algorithm for monotone
inclusion. Moreover, we reveal its similarity to Güler’s for convex minimization, and
we discuss an application to an ε-approximation solution of monotone inclusion in
the sense of Zaslavski.

Theorem 3.1 Let {(xk, λk)} be the corresponding iterate-parameter sequence in the
proximal point algorithm. Assume that limk→+∞

∑k−1
i=0 λ2

i = +∞. Then

∥∥λ−1
k

(
xk − xk+1)∥∥2

k∑

i=0

λ2
i ≤ 2

∣∣x0 − A−1(0)
∣∣εk, (16)
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∣∣xk − A−1(0)
∣∣ ≤ εk ≤ ∣∣x0 − A−1(0)

∣∣, lim
k→+∞ εk = lim

k→+∞
∣∣xk − A−1(0)

∣∣. (17)

As a consequence, the following relation:

lim
k→+∞ sup

∣∣A
(
xk

) − 0
∣∣2

k−1∑

i=0

λ2
i ≤ 2

∣∣x0 − A−1(0)
∣∣ lim
k→+∞

∣∣xk − A−1(0)
∣∣ (18)

holds as well.

Proof In view of the iterative formula (4), we have

λ−1
k

(
xk − xk+1) ∈ A

(
xk+1).

Thus, by the assumption 0 ∈ A(x∗) (because the existence of a solution has been
assumed throughout this paper) and A’s monotonicity, we can further get

〈
xk+1 − x∗, λ−1

k

(
xk − xk+1) − 0

〉 ≥ 0
λk>0=⇒ 〈

xk+1 − x∗, xk − xk+1〉 ≥ 0.

Therefore
∥∥xk − x∗∥∥2 = ∥∥xk − xk+1 + xk+1 − x∗∥∥2

= ∥∥xk − xk+1
∥∥2 + 2

〈
xk − xk+1, xk+1 − x∗〉 + ∥∥xk+1 − x∗∥∥2

≥ ∥∥xk − xk+1
∥∥2 + ∥∥xk+1 − x∗∥∥2

. (19)

This implies

∣∣xk+1 − A−1(0)
∣∣2 ≤ ∣∣xk − A−1(0)

∣∣2 − λ2
k

∥∥λ−1
k

(
xk − xk+1)∥∥2

. (20)

Denote

αk := ∣∣xk − A−1(0)
∣∣, βk := λ2

k, γk := ∥∥λ−1
k

(
xk − xk+1)∥∥2

.

Then it follows from Lemma 2.2 that

∥∥λ−1
k

(
xk − xk+1)∥∥2

k∑

i=0

λ2
i ≤ 2

∣∣x0 − A−1(0)
∣∣εk,

∣∣xk − A−1(0)
∣∣ ≤ εk ≤ ∣∣x0 − A−1(0)

∣∣, lim
k→+∞ εk = lim

k→+∞
∣∣xk − A−1(0)

∣∣

whenever limk→+∞
∑k−1

i=0 λ2
i = +∞. Thus, the relation (16) is proved.

Next, we need to prove (18). In fact, since λ−1
k (xk − xk+1) ∈ A(xk+1), we can use

the relation (16) to further obtain

∣∣A
(
xk+1) − 0

∣∣2
k∑

i=0

λ2
i ≤ 2

∣∣x0 − A−1(0)
∣∣εk. (21)
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On the other hand, it follows from the existence of the limit of {|xk − A−1(0)|} and
(17) that

lim
k→+∞ εk = lim

k→+∞
∣∣xk − A−1(0)

∣∣ = lim
k→+∞

∣∣xk+1 − A−1(0)
∣∣.

Hence, taking the limits on both sides of (21) and then using k ← k + 1 yield the
desired result.

It remains to prove global weak convergence. Denote wk := λ−1
k−1(x

k−1 − xk).

From (16) and the assumption limk→+∞
∑k−1

i=0 λ2
i = +∞, we know that the se-

quence {‖wk‖} converges to zero. Meanwhile, it follows from (19) that the sequence
{‖xk − x∗‖} has the limit, thus the sequence {xk} is bounded and there must exist
a weak accumulation point. From these two facts, A’s maximality and the relation
wk ∈ A(xk), we can follow [2] to prove global weak convergence of the proximal
point algorithm in an infinite-dimensional Hilbert space. Therefore, our new estimate
makes sense whenever limk→+∞

∑k−1
i=0 λ2

i = +∞. �

From this theorem, it can be easily seen that our new result (18) is comparable to
the classical result (7) of Brézis and Lions in general. In fact, under the assumption
above, which is equivalent to saying that

δk :=
(

k−1∑

i=0

λ2
i

)1/2

→ +∞, as k → +∞, (22)

either result tells us that |A(xk) − 0| ≤ O(1/δk). More importantly, only our new
result (18) can be improved above to |A(xk) − 0| = o(1/δk) whenever the proximal
point algorithm does converge strongly. This is because, if it is so, then there must
exist an element x∞ of the solution set such that (6) holds. Thus, we further have

∣∣xk − A−1(0)
∣∣ ≤ ∥∥xk − x∞∥∥ → 0, as k → +∞,

which, together with (18), yields the desired conclusion.

Remark 3.1 In Theorem 3.1, we follow [3] to make the assumption equivalent to
(22). This assumption is weaker than the one in [2], where the sequence of the reg-
ularization parameters was assumed to have a positive lower bound. The assumption
here will be still meaningful to consider the continuous version of the proximal point
algorithm:

0 ∈ dx(t)

dt
+ ∂f

(
x(t)

)
, x(0) = x,

where x belongs to the closure of the f ’s effective domain {x : f (x) < +∞}.

The corresponding backward Euler (implicit) approximation of this differential
inclusion is

0 ∈ xk+1 − xk

tk+1 − tk
+ ∂f

(
x(tk+1)

)
, x0 ∈ H, k = 0,1, . . . .
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If λk := tk+1 − tk > 0 is large, then the approximation is poor. To prevent it, we
may require λk be small. Furthermore, the sequence {λk} needs to satisfy λk ↓ 0 and
δk ↑ +∞ as k → +∞. When the ∂f above is replaced by some maximal monotone
operator, a related discussion is similar.

Interestingly, there is a remarkable similarity between our new estimate (18) for
monotone inclusion and Güler’s for convex minimization. First, let us show that the
sequence {|∂f (xk) − 0|2} is of the same order as {f (xk) − minf (x)} in the sense of
strictly convex quadratic functions. To this end, now we set

f (x) = 1

2
〈x,Mx〉 + 〈q, x〉 + c,

where M is an n × n symmetric positive definite matrix, q is an n-dimensional
vector and c is a constant. Clearly, for the function’s sub-differential, we have
∂f (x) = {∇f (x)} = {Mx +q}. Thus, the optimality condition of minimizing f (x) is
∇f (x∗) = 0, where x∗ is the unique solution. Below we consider the left-hand side
of the inequality (8)

f
(
xk

) − f
(
x∗) = 〈∇f

(
x∗), xk − x∗〉 + 1

2

〈
xk − x∗,M

(
xk − x∗)〉

= 1

2

〈
xk − x∗,M

(
xk − x∗)〉.

Meanwhile, for the left-hand side of the inequality (18), in views of the optimality
condition above and the iterative formula, we can get

∣∣∂f
(
xk

) − 0
∣∣2 = ∥∥∇f

(
xk

)∥∥2

= ∥∥∇f
(
xk

) − ∇f
(
x∗)∥∥2

= ∥∥M
(
xk − x∗)∥∥2

.

Thus, the assertion follows easily. Obviously, in the case of λk being a constant,
our new estimate (18) becomes |∂f (xk) − 0|2 = o(1/k) whereas Güler’s estimate
(9) becomes f (xk) − minf (x) = o(1/k). This implies that, in the sense of strictly
convex quadratic functions, our new estimate (18) for monotone inclusion has been
as good as Güler’s (9) for convex minimization.

Remark 3.2 The aforementioned are accuracy measures in the cases of convex
minimization and monotone inclusion. For other related discussions in a finite-
dimensional space, we refer to a recent paper by Nemirovski et al. [14] and the refer-
ences cited therein.

Below we would like to list the corresponding estimates of convergence rates of
the proximal point algorithm when the problem setting is finite-dimensional and the
sequence of the regularization parameters has a positive lower bound. They are direct
consequences of (18) and Güler’s estimate.
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Corollary 3.1 In the space R
n, if the sequence of the regularization parameters has

a positive lower bound, then the proximal point algorithm has the following estimate
of convergence rate in the context of convex minimization:

f
(
xk

) − minf (x) = o(1/k).

And in the context of the monotone inclusion (1), we have

∣∣A
(
xk

) − 0
∣∣2 = o(1/k).

At the end of this section, we would like to discuss the following question: How
many iterations in the worst case are needed for the proximal point algorithm with
constant regularization parameters to find an ε-approximation solution of the mono-
tone inclusion 0 ∈ A(x) in the space R

n? According to Theorem 3.1, the answer is
satisfactory. It follows from the iterative formula

wk := λ−1
k−1

(
xk−1 − xk

)
, wk ∈ A

(
xk

)

and

o(1/k) = ∥∥λ−1
k−1

(
xk−1 − xk

)∥∥2 ≤ ε2

that the proximal point algorithm used will find an ε-approximation solution in at
most K iterations, where K is much fewer than O(1/ε2). In contrast, if we make use
of the classical result of Brézis and Lions [3, Proposition 8], then the associated K

becomes O(1/ε2) in the worst case.

4 Conclusions

In this paper, we have studied the proximal point algorithm for monotone inclusion
in an infinite-dimensional Hilbert space. For the usual distance between the origin
and the operator’s value at each iterate, under the weakest possible assumptions, we
gave a new result on the speed at which the distance sequence tends to zero globally.
In contrast to the classical result of Brézis and Lions, our new result is comparable
in general and becomes better whenever the proximal point algorithm does converge
strongly.

Here it should be specially stressed that, to the best of the author’s knowledge,
the idea embodied in the proof of Lemma 2.2 is new in the optimization literature.
How to further apply it to analyze the Douglas–Rachford operator splitting method of
Lions and Mercier [15] (cf. [16–19]) for monotone inclusion is one of our on-going
research topics.
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