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bounds on directed factors are desirably larger than existing ones, assuming that the involved factors remain
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1 Introduction

It is well-known that fixed point theory and algorithms play a crucial role in many branches of mathematics.

The Krasnosel’skĭi-Mann (KM for short) iteration [12, 13, 17, 14] serves as a fundamental iterative scheme

for locating fixed points of non-expansive operators in real Hilbert spaces. The distinctive characteristic of the

KM iteration is that the new iterate is obtained as a convex combination of the current iterate and its operator

evaluation.

Recently, [5, 8] investigated a directed version of the KM iteration, which can be viewed as a special case of

[15], incorporating an additional term that involves a nonnegative factor and the difference between the two most

recent iterates. Notably, the assumptions [8] regarding this factor are less restrictive than those assumptions [5],

and they are independent of the iterates themselves.

The objective of this article is to introduce significantly different assumptions regarding the aforementioned

factor. As illustrated below, these assumptions are weaker than those [8] and remarkably enable a new, concise,

self-contained, and simplified proof of the weak convergence of the directed KM iteration. Impressively, this proof

no longer relies on the seminal lemma [1].

2 Preliminaries

In this section, we first give some basic definitions and then provide some auxiliary results for later use.

Let H be an infinite-dimensional real Hilbert space equipped with the standard inner product 〈x, y〉 and the

induced norm |x| =
√
〈x, x〉 for x, y ∈ H.

An operator T : H → H is said to be non-expansive if it satisfies the inequality:

‖T (x)− T (y)‖ ≤ ‖x− y‖
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for all x, y in H.

The Krasnosel’skĭi-Mann (KM) iteration is defined as follows:

xk+1 = (1− αk)xk + αkT (xk), k = 0, 1, . . . ,

where the coefficient αk ∈ [0, 1] and the series
∑
αk(1 − αk) diverges. Refer to [14, 11] for relevant discussions

and the cited references.

To speed up the KM iteration, [5] proposed the following modification:

xk+1 = (1− αk)xk + αkT (xk) + (1− αk)δk(xk − xk−1),

where δk ≥ 0 and x−1 := x0. Hereafter, (1− αk)δk is called a directed factor.

For weak convergence, the following assumptions were introduced in [8]:

ε ≤ αk < 1, (1)

0 ≤ δk ≤ 1, (2)

(1− αk−1)δk−1 ≤ (1− αk)δk, (3)(
1

αk−1
− 1

)
(1− δk−1)−

(
2− 1

αk
− αk

)
δ2k −

(
1

αk
− αk

)
δk ≥ ε, (4)

where ε is a given sufficiently small positive number.

Finally, we give the following two lemmas to be used later.

Lemma 2.1 Assume that α > 0. If 4αβ ≥ γ2, then

α‖a‖2 + β ‖b‖2 + γ 〈a, b〉 ≥ 0, ∀a, b ∈ H.

Lemma 2.2 [3, 16] Consider any maximal monotone operator A : H ⇒ H. Assume that the sequence {wk} in

H converges weakly to w, and the sequence {sk} on domT converges strongly to s. If A(wk) 3 sk for any k, then

the relation A(w) 3 s must hold.

3 Directed KM Iteration

In this section, we propose directed KM iteration, and we suggest new and weaker assumptions for analyzing

weak convergence.

First of all, we make the following assumptions. For a given sufficiently small positive number ε, we assume

that

ε ≤ αk ≤ 1− ε, (5)

0 ≤ δk ≤
1

1− αk

(
1− ε− 1

1 + (1− σ)(1− αk−1)/αk−1

)
, (6)

(1− αk−1)δk−1 ≤ (1− αk)δk, (7)

δk ≤
−1 +

√
1 + 4(( 1

σ − 1) 1
αk

+ 1)((1− σ)
1−αk−1

αk−1

1
1−αk

− ε
1−αk

)

2( 1
σ − 1) 1

αk
+ 2

, (8)

where σ is chosen in the interval [0.01, 0.99].

Below we describe the aforementioned directed KM iteration — Algorithm 3.1.

Algorithm 3.1 directed KM iteration

1: Choose x−1 = x0 ∈ H. Choose some sufficiently small positive number ε. Set k := 0.

2: Choose (αk, δk) such that (5)-(8) hold. Compute

xk+1 = (1− αk)xk + αk T (xk) + (1− αk)δk (xk − xk−1). (9)

Set k := k + 1.
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Next, we numerically demonstrate the assumptions (6) and (8) to some extent. For brevity, we simply set

αk ≡ α, δk ≡ δ. Thus, we get

δ < min

 1

1− α

(
1− 1

1 + (1− σ)(1− α)/α

)
,
−1 +

√
1 + 4(( 1

σ − 1) 1
α + 1)(1− σ) 1

α

2( 1
σ − 1) 1

α + 2

 , (10)

where σ is chosen in [0.01, 0.99].

Numerical demonstration was given in Table 1, where δ− corresponds to the values from [8, Table 1], the pair

(δ(10), σ) corresponds to (10).

Table 1: Numerical comparisons of [8, Table 1] with (10)

α 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99

δ− 0.4105 0.3983 0.3870 0.3765 0.3668 0.3576 0.3490 0.3410 0.3348

δ(10) 0.4397 0.4230 0.4075 0.3930 0.3795 0.3668 0.3549 0.3437 0.3353

σ 0.49 0.46 0.45 0.42 0.40 0.38 0.36 0.34 0.33

α 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

δ− 0.6143 0.5746 0.5426 0.5157 0.4927 0.4725 0.4545 0.4384 0.4239

δ(10) 0.6394 0.6389 0.6038 0.5730 0.5455 0.5206 0.4978 0.4769 0.4575

σ 0.75 0.70 0.66 0.63 0.61 0.58 0.56 0.54 0.50

From Table 1, we can observe that our computed values of δ are consistently larger than the corresponding

values from [8, Table 1] for each sampling point.

Remark 3.1 The manuscript entitled On an accelerated Krasnosel’skĭı-Mann iteration, mentioned in subsequent

work [7], is an original draft of this article. In the current version, we have revised ”accelerated” as ”directed”

because the term xk − xk−1 in Algorithm 3.1 can provide information on previous descent/search direction. In

this sense, the terminology ”directed”, corresponding to ”direction”, appears to be more appropriate.

4 Weak convergence

In this section, we prove weak convergence of Algorithm 3.1.

Lemma 4.1 Let {xk} be the sequence generated by Algorithm 3.1, and let z be a fixed point of T . Then

‖xk+1 − z‖2 ≤ (1 + (1− αk)δk)‖xk − z‖2 − (1− αk)δk‖xk−1 − z‖2

− 1− αk
αk

‖xk+1 − xk‖2 + 2
1− αk
αk

δk〈xk+1 − xk, xk − xk−1〉

+

(
(1− αk)δk(1 + δk)− 1− αk

αk
δ2k

)
‖xk − xk−1‖2.

Proof In view of the iterative formula (9), we have

x̂k = xk + δk (xk − xk−1), (11)

xk+1 = (1− αk) x̂k + αkT (xk). (12)

For any given fixed point z of T , i.e., T (z) = z, it follows from (12) that

xk+1 − z = (1− αk)(x̂k − z) + αk (Txk − Tz).

Since T is non-expansive, we have

‖xk+1 − z‖2 =αk‖Txk − Tz‖2 + (1− αk)‖x̂k − z‖2 − αk(1− αk)‖Txk − x̂k‖2

≤αk‖xk − z‖2 + (1− αk)‖x̂k − z‖2 − αk(1− αk)‖Txk − x̂k‖2.
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From (12) and (11), we have

αk (Txk − x̂k) = xk+1 − x̂k = xk+1 − xk − δk(xk − xk−1),

so, we get

α2
k ‖Txk − x̂k‖2

= ‖xk+1 − xk‖2 + δ2k‖xk − xk−1‖2 − 2δk 〈xk+1 − xk, xk − xk−1〉.

Observe that

‖x̂k − z‖2 = ‖(1 + δk)(xk − z)− δk(xk−1 − z)‖2

= (1 + δk)‖xk − z‖2 − δk‖xk−1 − z‖2 + δk(1 + δk)‖xk − xk−1‖2.

Thus, we further get

‖xk+1 − z‖2 ≤ (1 + (1− αk)δk)‖xk − z‖2 − (1− αk)δk‖xk−1 − z‖2

− 1− αk
αk

‖xk+1 − xk‖2 + 2
1− αk
αk

δk〈xk+1 − xk, xk − xk−1〉

+

(
(1− αk)δk(1 + δk)− 1− αk

αk
δ2k

)
‖xk − xk−1‖2.

The proof is complete. ut

Theorem 4.1 If αk and δk further satisfy (5)-(8), then the sequence {xk} generated by Algorithm 3.1 is weakly

convergent.

Proof It follows from Lemma 4.1 and (7) that

‖xk+1 − z‖2 − (1− αk+1)δk+1‖xk − z‖2 + (1− σ)
1− αk
αk

‖xk+1 − xk‖2

≤ ‖xk − z‖2 − (1− αk)δk‖xk−1 − z‖2 + (1− σ)
1− αk−1

αk−1
‖xk − xk−1‖2 −∆k, (13)

where σ ∈ (0, 1) and ∆k is given by

∆k := σ
1− αk
αk

‖xk+1 − xk‖2 − 2
1− αk
αk

δk〈xk+1 − xk, xk − xk−1〉

+

(
(1− σ)

1− αk−1

αk−1
− (1− αk)δk(1 + δk) +

1− αk
αk

δ2k

)
‖xk − xk−1‖2.

Set

ϕk := ‖xk − z‖2 − (1− αk)δk‖xk−1 − z‖2 + (1− σ)
1− αk−1

αk−1
‖xk − xk−1‖2. (14)

Then

ϕk+1 ≤ ϕk −∆k. (15)

Consider

ϕk := ‖xk − z‖2 − (1− αk)δk‖xk−1 − z‖2 + (1− σ)
1− αk−1

αk−1
‖xk − xk−1‖2

= ‖xk−1 − z‖2 + 2〈xk−1 − z, xk − xk−1〉+ ‖xk − xk−1‖2

− (1− αk)δk‖xk−1 − z‖2 + (1− σ)
1− αk−1

αk−1
‖xk − xk−1‖2

= (1− (1− αk)δk) ‖xk−1 − z‖2 + 2〈xk−1 − z, xk − xk−1〉

+

(
1 + (1− σ)

1− αk−1

αk−1

)
‖xk − xk−1‖2.

Combining this with Lemma 4.1 and the assumption (6)

δk ≤
1

1− αk

(
1− ε− 1

1 + (1− σ)(1− αk−1)/αk−1

)
⇔ (1− ε− (1− αk)δk) (1 + (1− σ)(1− αk−1)/αk−1) ≥ 1
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yields

ϕk ≥ ε ‖xk−1 − z‖2.

Similarly, by Lemma 4.1 and the assumption (8)

δk ≤
−1 +

√
1 + 4(( 1

σ − 1) 1
αk

+ 1)((1− σ)
1−αk−1

αk−1

1
1−αk

− ε
1−αk

)

2( 1
σ − 1) 1

αk
+ 2

⇔
(

(
1

σ
− 1)

1

αk
+ 1

)
δ2k + δk − (1− σ)

1− αk−1

αk−1

1

1− αk
+

ε

1− αk
≤ 0

⇔ σ
1− αk
αk

(
(1− σ)

1− αk−1

αk−1
− (1− αk)δk(1 + δk) +

1− αk
αk

δ2k − ε
)

≥ (1− αk)2

α2
k

δ2k,

we can get

∆k ≥ ε ‖xk − xk−1‖2.

Obviously, from these two relations and (15), we conclude that

lim ϕk exists ⇒ ‖xk−1 − z‖ (thus ‖xk − z‖) is bounded; (16)

lim ∆k = 0 ⇒ lim ‖xk − xk−1‖ = 0. (17)

From αk ∈ [ε, 1− ε] and

(I − T )(xk) =
(1− αk)δk(xk − xk−1)− (xk+1 − xk)

αk
,

On the other hand, as proved in (16), {xk} is bounded in norm, thus there exists at least one weak cluster point

z∞, i.e.,

xkj
⇀ z∞. (18)

Finally, since I − N is continuous and monotone, it must be maximal monotone. In view of Lemma 2.2, (I −
N)(z∞) = 0.

Denote

φk(z) := ‖xk − z‖2 − (1− αk)δk‖xk−1 − z‖2.

Then, it follows from (14), (16) and (17) that limφk(z) exists as well.

Below, we show that {xk} weakly converges to z∞. Let z∞1 and z∞2 be two weak cluster points of {xk}. Then,

repeating the arguments above yields that z∞1 and z∞2 are solutions. Correspondingly, we set

li := limφk(z∞i ), i = 1, 2.

Consider

‖xk − z∞1 ‖2 − (1− αk)δk‖xk−1 − z∞1 ‖2

= ‖xk − z∞2 ‖2 − 2〈xk − z∞2 , z∞1 − z∞2 〉+ ‖z∞1 − z∞2 ‖2

− (1− αk)δk

(
‖xk−1 − z∞2 ‖2 − 2〈xk−1 − z∞2 , z∞1 − z∞2 〉+ ‖z∞1 − z∞2 ‖2

)
= ‖xk − z∞2 ‖2 − (1− αk)δk‖xk−1 − z∞2 ‖2 − 2〈xk − z∞2 , z∞1 − z∞2 〉+ 2(1− αk)δk〈xk−1 − z∞2 , z∞1 − z∞2 〉

+ (1− (1− αk)δk)‖z∞1 − z∞2 ‖2

≥‖xk − z∞2 ‖2 − (1− αk)δk‖xk−1 − z∞2 ‖2 − 2〈xk − z∞2 , z∞1 − z∞2 〉+ 2(1− αk)δk〈xk−1 − z∞2 , z∞1 − z∞2 〉

+ ε‖z∞1 − z∞2 ‖2,

where the inequality follows from (6), which indicates

(1− αk)δk ≤ 1− ε.

Meanwhile

〈xk−1 − z∞2 , z∞1 − z∞2 〉 = 〈xk − z∞2 , z∞1 − z∞2 〉 − 〈xk − xk−1, z
∞
1 − z∞2 〉.
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Combing this with (17) and taking the limit along k ∈ N1, where N1 such that {xk} along k ∈ N1 weakly

converges to z∞2 , we get

l1 ≥ l2 + ε‖z∞1 − z∞2 ‖2.

Similarly, we also get

l2 ≥ l1 + ε‖z∞2 − z∞1 ‖2.

Adding these two inequalities yields z∞1 = z∞2 and {xk} converges weakly. ut

5 Conclusions

In this article, we have studied a directed Krasnosel’skĭi-Mann iteration in real Hilbert spaces. By invoking new,

self-contained, and simplified techniques, we prove its weak convergence. Notably, our new upper bounds on

directed factors are desirably larger than existing ones, assuming that the involved factors remain constant.

At the end of this article, it shall be specially stressed that our new techniques would be a widely used tool

in enlarging upper bounds on directed factors in context of some splitting methods (cf. [8, 4]). The resulting

directed splitting methods can be more efficient in practice [8, 4] than those inertial ones (cf. [2, 6, 11, 10]), but

with more direct and much simpler convergence analysis.
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1 Introduction

In many branches of mathematics, fixed point theory and algorithms play a

crucial role as fundamental tools.

The Krasnosel’skĭi-Mann (KM) iteration [1, 2] serves as a fundamental

iterative scheme for locating fixed points of non-expansive operators in real

Hilbert spaces. The distinctive characteristic of the KM iteration is that the

new iterate is obtained as a convex combination of the current iterate and its

operator evaluation.

Recently, [3, 4] investigated an accelerated version of the KM iteration,

incorporating an additional term that involves a nonnegative factor and the

difference between the two most recent iterates. Notably, the assumptions [4]
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regarding this factor are less restrictive compared to those [3], and they are

independent of the iterates themselves.

The objective of this note is to introduce significantly different assumptions

regarding the aforementioned factor. As illustrated below, these assumptions

are weaker than those [4] and remarkably enable a new, concise, self-contained,

and simplified proof of the weak convergence of the accelerated KM iteration.

Impressively, unlike the proof of [4, Theorem 1], this proof no longer relies on

the seminal result [5, Lemma 2.3].

2 Preliminaries

In this section, we first give some basic definitions and then provide some

auxiliary results for later use.

Let H be an infinite-dimensional real Hilbert space equipped with the

standard inner product ⟨x, y⟩ and the induced norm |x| =
√
⟨x, x⟩ for x, y ∈ H.

An operator T : H → H is said to be non-expansive if it satisfies the

inequality:

∥T (x)− T (y)∥ ≤ ∥x− y∥

for all x, y in H.

The Krasnosel’skĭi-Mann (KM) iteration is defined as follows:

xk+1 = (1− αk)xk + αkT (xk), k = 0, 1, . . . ,

where the coefficient αk ∈ [0, 1] and the series
∑

αk(1−αk) diverges. Refer to

[6–8] for relevant discussions and the cited references.

To accelerate the KM iteration, [3] proposed the following modification:

xk+1 = (1− αk)xk + αkT (xk) + (1− αk)δk(xk − xk−1),

where δk ≥ 0 and x−1 := x0.

For weak convergence, the following assumptions were introduced in [4]:

ε ≤ αk < 1, 0 ≤ δk ≤ 1, (1− αk−1)δk−1 ≤ (1− αk)δk,(
1

αk−1
− 1

)
(1− δk−1)−

(
2− 1

αk
− αk

)
δ2k −

(
1

αk
− αk

)
δk ≥ ε, (1)

where ε is a given sufficiently small positive number.
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3 Results

In this section, we propose accelerated KM iteration, and we suggest new and

weaker assumptions for analyzing weak convergence.

First of all, we would like to point out that, by our numerical experiments

[4], αk in the KM iteration shall be close to 1 for numerical efficiency in practice

and weak convergence in theory. Thus, we give a practical, accelerated KM

iteration — Algorithm 3.1.

Algorithm 3.1 a practical, accelerated KM iteration

1: Choose x−1 = x0 ∈ H. Choose ε = 10−9 and α ∈ [0.80, 0.99]. Compute h1(α) via (2),

and denote by δ+. Choose δ−1 = 0. Set k := 0.

2: Choose δk ∈ [δk−1, δ
+]. Compute

xk+1 = (1− α)xk + αT (xk) + (1− α)δk (xk − xk−1).

Set k := k + 1.

To provide a better understanding of the practical, accelerated KM itera-

tion, we define h1(α) and h2(α) as follows.

h1(α) := 0.5
−1 +

√
1 + 4( 2

α + 1)( 2
3α − ε

1−α )

2
α + 1

, (2)

h2(α) :=
1

1− α

(
1− ε− 1

1 + 2
3
1−α
α

)
,

where ε = 10−9, and the graphs of h1(α) and h2(α) are plotted in Fig. 1 using

MATLAB. Also, it is direct to check that

1

3
< h1(α) <

1

2
< h2(α), α ∈ [0.80, 0.99]. (3)
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Below, we describe the accelerated KM iteration in a general case of αk ∈
[ε, 1− ε], for a given sufficiently small positive number ε.

For the following accelerated KM iteration

xk+1 = (1− αk)xk + αkT (xk) + (1− αk)δk (xk − xk−1), k = 0, 1, ..., (4)

with α−1 = α0 in [ε, 1 − ε] and δ−1 = 0, we assume that, (i) the sequences

{αk} and {δk} satisfy

αk ∈ [ε, 1− ε], δk ≥ δk−1(1− αk−1)/(1− αk); (5)

(ii)

δ+k := 0.5
−1 +

√
1 + 4(( 1σ − 1) 1

αk
+ 1)((1− σ) 1−αk−1

αk−1

1
1−αk

− ε
1−αk

)

( 1σ − 1) 1
αk

+ 1
,

δk ≤ min

{
δ+k ,

1

1− αk

(
1− ε− 1

1 + (1− σ)(1− αk−1)/αk−1

)}
, (6)

where σ is chosen in (0, 1) in advance.

Unlike (1), the corresponding assumption (6) no longer includes δk−1. This

fully shows that they are widely different.

Obviously, for this accelerated KM iteration described by (4)-(6), it reduces

to Algorithm 3.1 provided that αk ≡ α and σ = 1/3.

Notice that, the extra variable σ in (6) shall be chosen to maximize the

min function defined in the interval (0, 1). See Remark 3.2 and Fig. 2 below

for more details.

In the analysis of weak convergence for the accelerated KM iteration given

by (4)-(6), we make use of the following lemmas to simplify the analysis.

Lemma 3.1 Assume that α > 0. If 4αβ ≥ γ2, then

α∥a∥2 + β ∥b∥2 + γ ⟨a, b⟩ ≥ 0, ∀a, b ∈ H.

Lemma 3.2 ([9, Sect. 3]) Let α > 0, t ∈ R. If 4α > t2β, then the following

⟨x, αx⟩+ ⟨u, βu⟩ − t⟨x, βu⟩ ≥
α+ β −

√
(α− β)2 + t2β2

2

(
∥x∥2 + ∥u∥2

)
holds for all x, u ∈ H.

Using these lemmas, we can establish the weak convergence of the acceler-

ated KM iteration.
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Theorem 3.1 The sequence {xk} generated by Algorithm 3.1 converges weakly

to a fixed point of T .

For Theorem 3.1, we decide to omit its proof details here. This is because

that (i) it can be viewed as an instance σ = 1/3 of that of the next theorem

and (ii) the statement ”Choose δk ∈ [δk−1, δ
+]” in Algorithm 3.1 corresponds

to (5) and (6); see Fig. 1 and the desired inequality (3).

Theorem 3.2 If the assumptions (5)-(6) hold, then the sequence {xk} gener-

ated by (4) converges weakly to a fixed point of T .

Proof In view of (4), we have

x̂k = xk + δk (xk − xk−1), (7)

xk+1 = (1− αk) x̂k + αkT (xk). (8)

For any given fixed point z of T , i.e., T (z) = z, it follows from (8) that

xk+1 − z = (1− αk)(x̂k − z) + αk (Txk − Tz).

Since T is non-expansive, we have

∥xk+1 − z∥2 =αk∥Txk − Tz∥2 + (1− αk)∥x̂k − z∥2 − αk(1− αk)∥Txk − x̂k∥2

≤αk∥xk − z∥2 + (1− αk)∥x̂k − z∥2 − αk(1− αk)∥Txk − x̂k∥2.

From (8) and (7), we have

αk (Txk − x̂k) = xk+1 − x̂k = xk+1 − xk − δk(xk − xk−1),

so, we get

α2
k ∥Txk − x̂k∥2

= ∥xk+1 − xk∥2 + δ2k∥xk − xk−1∥2 − 2δk ⟨xk+1 − xk, xk − xk−1⟩.

Observe that

∥x̂k − z∥2 = ∥(1 + δk)(xk − z)− δk(xk−1 − z)∥2

= (1 + δk)∥xk − z∥2 − δk∥xk−1 − z∥2 + δk(1 + δk)∥xk − xk−1∥2.

Thus, we further get

∥xk+1 − z∥2 ≤ (1 + (1− αk)δk)∥xk − z∥2 − (1− αk)δk∥xk−1 − z∥2

− 1− αk

αk
∥xk+1 − xk∥2 + 2

1− αk

αk
δk⟨xk+1 − xk, xk − xk−1⟩

+

(
(1− αk)δk(1 + δk)−

1− αk

αk
δ2k

)
∥xk − xk−1∥2.
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From the assumption (5), we have

∥xk+1 − z∥2 − (1− αk+1)δk+1∥xk − z∥2 + (1− σ)
1− αk

αk
∥xk+1 − xk∥2

≤ ∥xk − z∥2 − (1− αk)δk∥xk−1 − z∥2 + (1− σ)
1− αk−1

αk−1
∥xk − xk−1∥2 −∆k,

(9)

where σ ∈ (0, 1) and ∆k is given by

∆k := σ
1− αk

αk
∥xk+1 − xk∥2 − 2

1− αk

αk
δk⟨xk+1 − xk, xk − xk−1⟩

+

(
(1− σ)

1− αk−1

αk−1
− (1− αk)δk(1 + δk) +

1− αk

αk
δ2k

)
∥xk − xk−1∥2.

Set

φk := ∥xk − z∥2 − (1− αk)δk∥xk−1 − z∥2 + (1− σ)
1− αk−1

αk−1
∥xk − xk−1∥2.

Then

φk+1 ≤ φk −∆k. (10)

Consider

φk := ∥xk − z∥2 − (1− αk)δk∥xk−1 − z∥2 + (1− σ)
1− αk−1

αk−1
∥xk − xk−1∥2

= ∥xk−1 − z∥2 + 2⟨xk−1 − z, xk − xk−1⟩+ ∥xk − xk−1∥2

− (1− αk)δk∥xk−1 − z∥2 + (1− σ)
1− αk−1

αk−1
∥xk − xk−1∥2

= (1− (1− αk)δk) ∥xk−1 − z∥2 + 2⟨xk−1 − z, xk − xk−1⟩

+

(
1 + (1− σ)

1− αk−1

αk−1

)
∥xk − xk−1∥2.

Combining this with Lemma 3.1 and the assumption (6)

δk ≤ 1

1− αk

(
1− ε− 1

1 + (1− σ)(1− αk−1)/αk−1

)
,

⇔ (1− ε− (1− αk)δk) (1 + (1− σ)(1− αk−1)/αk−1) ≥ 1

yields

φk ≥ ε ∥xk−1 − z∥2.
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Similarly, by Lemma 3.1 and the assumption (6)

δk ≤ 0.5
−1 +

√
1 + 4(( 1σ − 1) 1

αk
+ 1)((1− σ) 1−αk−1

αk−1

1
1−αk

− ε
1−αk

)

( 1σ − 1) 1
αk

+ 1

⇔
(
(
1

σ
− 1)

1

αk
+ 1

)
δ2k + δk − (1− σ)

1− αk−1

αk−1

1

1− αk
+

ε

1− αk
≤ 0

⇔ σ
1− αk

αk

(
(1− σ)

1− αk−1

αk−1
− (1− αk)δk(1 + δk) +

1− αk

αk
δ2k − ε

)
≥ (1− αk)

2

α2
k

δ2k,

we can get

∆k ≥ ε ∥xk − xk−1∥2.

Obviously, from these two relations and (10), we conclude that

lim φk exists ⇒ ∥xk−1 − z∥ (thus ∥xk − z∥) is bounded in norm;

lim ∆k = 0 ⇒ lim ∥xk − xk−1∥ = 0.

From (5) and

(I − T )(xk) =
(1− αk)δk(xk − xk−1)− (xk+1 − xk)

αk
,

it is not difficult to follow [10, Theorem 3.1] to complete the proof. ⊓⊔

Remark 3.1 Next, we numerically demonstrate the assumption (6) to some

extent. For brevity, we simply set αk ≡ α, δk ≡ δ. Then the assumption (6)

above reduces to

δ+ := 0.5
−1 +

√
1 + 4(( 1σ − 1) 1

α + 1)(1− σ) 1
α

( 1σ − 1) 1
α + 1

,

δ < min

{
δ+,

1

1− α

(
1− 1

1 + (1− σ)(1− α)/α

)}
:= f(σ). (11)

Be aware that, in contrast to (6), we no longer introduce the extra ε above

because we turn to resort to Lemma 3.2. In addition, we have replaced ≤ there

by < here.

Numerical demonstration of (11) is given in Table 1, where δnew stands

for a slightly lower approximation of the maximum of f in (11) with respect

to σ. We also provide the values from [4, Table 1] for comparison.

From Tables 1 and 2, we can observe that our computed values of δnew are

consistently larger than the corresponding values from [4, Table 1] for each

sampling point.
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Table 1: Numerical demonstration of (11) with respect to σ

α 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99

δnew 0.4397 0.4230 0.4075 0.3930 0.3795 0.3668 0.3549 0.3437 0.3353

σ 0.49 0.46 0.45 0.42 0.40 0.38 0.36 0.34 0.33

α 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

δnew 0.6394 0.6389 0.6038 0.5730 0.5455 0.5206 0.4978 0.4769 0.4575

σ 0.75 0.70 0.66 0.63 0.61 0.58 0.56 0.54 0.50

Table 2: Numerical demonstration of [4, Table 1]

α 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99

δ− 0.4105 0.3983 0.3870 0.3765 0.3668 0.3576 0.3490 0.3410 0.3348

α 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

δ− 0.6143 0.5746 0.5426 0.5157 0.4927 0.4725 0.4545 0.4384 0.4239

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3
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Fig. 2: The graph of f( ) for different 

=0.80

=0.90

=0.95

Remark 3.2 For the KM iteration, choosing α close to 1 in its accelerated and

inertial versions [4, 10] is generally a good strategy. In this case, it is noted

that selecting σ to be equal to or close to 1/3 has been found to be a favorable

choice; see Table 1 and Fig. 2.
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