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Abstract In this article, we study a directed Krasnosel’skii-Mann iteration in real Hilbert spaces. Through the
utilization of new, self-contained, and simplified techniques, we prove its weak convergence. Notably, our upper
bounds on directed factors are desirably larger than existing ones, assuming that the involved factors remain

constant.
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1 Introduction

It is well-known that fixed point theory and algorithms play a crucial role in many branches of mathematics.

The Krasnosel’skii-Mann (KM for short) iteration [12, 13, 17, 14] serves as a fundamental iterative scheme
for locating fixed points of non-expansive operators in real Hilbert spaces. The distinctive characteristic of the
KM iteration is that the new iterate is obtained as a convex combination of the current iterate and its operator
evaluation.

Recently, [5, 8] investigated a directed version of the KM iteration, which can be viewed as a special case of
[15], incorporating an additional term that involves a nonnegative factor and the difference between the two most
recent iterates. Notably, the assumptions [8] regarding this factor are less restrictive than those assumptions [5],
and they are independent of the iterates themselves.

The objective of this article is to introduce significantly different assumptions regarding the aforementioned
factor. As illustrated below, these assumptions are weaker than those [8] and remarkably enable a new, concise,
self-contained, and simplified proof of the weak convergence of the directed KM iteration. Impressively, this proof

no longer relies on the seminal lemma [1].

2 Preliminaries

In this section, we first give some basic definitions and then provide some auxiliary results for later use.
Let ‘H be an infinite-dimensional real Hilbert space equipped with the standard inner product (z,y) and the
induced norm |z| = /{(z,z) for x,y € H.

An operator T : H — H is said to be non-expansive if it satisfies the inequality:

IT(x) = T ()| < llz—yll

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, 450001, PR China
Tel.: +-86-0371-67780033

Fax: +86-0371-67780033

E-mail: ydong@zzu.edu.cn



2 Yunda Dong

for all z,y in H.
The Krasnosel’skii-Mann (KM) iteration is defined as follows:

Th4+1 = (1_C¥k)mk+akT($k)7 k:0717"'7

where the coefficient o, € [0,1] and the series > ai(1 — ayi) diverges. Refer to [14, 11] for relevant discussions
and the cited references.
To speed up the KM iteration, [5] proposed the following modification:

Tpr1 = (1 — ag)zk + arT(zr) + (1 — ok )0k (ke — T—1),

where 0 > 0 and z_1 := xo. Hereafter, (1 — )0y is called a directed factor.

For weak convergence, the following assumptions were introduced in [8]:

e<ag <1, (1)
0<0r <1, (2)
(1 —ag—1)0k—1 < (1 — ag)dk, (3)

(a:_l _ 1) (1= 6k1) — (2 - aik - ak) 52 — (aik _ ak) 5> e, @

where € is a given sufficiently small positive number.

Finally, we give the following two lemmas to be used later.
Lemma 2.1 Assume that o > 0. If 4a8 > 42, then
allall* + BIIb]* +7(a,b) > 0, Va,beH.

Lemma 2.2 [3, 16] Consider any mazimal monotone operator A: H = H. Assume that the sequence {w"} in
H converges weakly to w, and the sequence {s*} on domT converges strongly to s. If A(w®) 3 s* for any k, then
the relation A(w) > s must hold.

3 Directed KM Iteration

In this section, we propose directed KM iteration, and we suggest new and weaker assumptions for analyzing
weak convergence.

First of all, we make the following assumptions. For a given sufficiently small positive number ¢, we assume
that

e<ar<1-—g, (5)
1 1
0< 6 < 1—e— 6
= k_l_ak( : 1+(1—0’)(1—ak_1)/ak_1)’ (6)
(1 —oag—1)0k—1 < (1 — ag)dk, (7)
-1+ \/1 —}—4((% — 1)0% +1)((1— 0)1;::4 1—1ak _ 1_50%)
6 < : (8)

2z -1 +2

where o is chosen in the interval [0.01,0.99].

Below we describe the aforementioned directed KM iteration — Algorithm 3.1.

Algorithm 3.1 directed KM iteration

1: Choose z_1 = zg € H. Choose some sufficiently small positive number . Set k := 0.

2: Choose (o, dx) such that (5)-(8) hold. Compute
o1 = (1 —ag)wp + o T(wk) + (1 — ag) Ok (xk — Tp—1)- )

Set k:=k+ 1.
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Next, we numerically demonstrate the assumptions (6) and (8) to some extent. For brevity, we simply set

ag = «, 0 = 6. Thus, we get

0 < min ) (10)

_ 1_ )L _ L
! <1_ ! ) L+ 1+ 4((2 = D)L +1)(1 - 0)2
11—« 1+(1-0)(1-a)/a 2L —1)t +2

where o is chosen in [0.01,0.99].
Numerical demonstration was given in Table 1, where d_ corresponds to the values from [8, Table 1], the pair
(6(10), o) corresponds to (10).

Table 1: Numerical comparisons of [8, Table 1] with (10)

a 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99
[ 0.4105 0.3983 0.3870 0.3765 0.3668 0.3576  0.3490 0.3410 0.3348
6(10) | 0.4397 0.4230 0.4075 0.3930 0.3795 0.3668 0.3549 0.3437  0.3353
o 0.49 0.46 0.45 0.42 0.40 0.38 0.36 0.34 0.33
a 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
[ 0.6143 0.5746  0.5426 0.5157 0.4927 0.4725 0.4545 0.4384 0.4239
4(10) | 0.6394 0.6389 0.6038 0.5730 0.5455 0.5206 0.4978 0.4769  0.4575
o 0.75 0.70 0.66 0.63 0.61 0.58 0.56 0.54 0.50

From Table 1, we can observe that our computed values of § are consistently larger than the corresponding

values from [8, Table 1] for each sampling point.

Remark 3.1 The manuscript entitled On an accelerated Krasnosel’skit-Mann iteration, mentioned in subsequent
work [7], is an original draft of this article. In the current version, we have revised ”accelerated” as ”directed”
because the term xj — zr_1 in Algorithm 3.1 can provide information on previous descent/search direction. In

this sense, the terminology ”directed”, corresponding to ”direction”, appears to be more appropriate.

4 Weak convergence

In this section, we prove weak convergence of Algorithm 3.1.
Lemma 4.1 Let {x} be the sequence generated by Algorithm 3.1, and let z be a fixed point of T. Then

ks = 2l < (14 (1= an) i) llow — 2I* = (1 = aw) Sellew—1 — 2|

l—ak l—ak

Zhe1 — zx)® +2 Ok{Tht1 — Thy Tk — Th—1)

l—ak,

+ ((1 an)e(1 4 8) — 5%) ek — apa.

Proof In view of the iterative formula (9), we have

T = xk + 0k (Tk — Th—1), (11)

Trt1 = (1 —ag) &g + ar T(xk). (12)
For any given fixed point z of T, i.e., T(z) = z, it follows from (12) that
Tht1 — 2= (1 —ag) (@ — 2) + ar (Txr — Tz).
Since T is non-expansive, we have

ekt — 2)1* = al|Tee — T2l + (1 — ax) & — 2)1* = ar (1 — ax) | Tox — @)

<oapllzr — 2] + (1 — aw)lldr — 2)|° — (1 — o) | Tg, — el
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From (12) and (11), we have

ag (Try — k) = 1 — Tk = Th1 — Tk — Ok (T — Tp—1),
so, we get

ai | Ty, — @]

= ||zrt1 — zell® + 6llzr — 2e—1ll® — 20k (Ths1 — Tk, Th — Th—1)-
Observe that
2% — 21" = (1 + 6k) (zx, — 2) — Sk (zr—1 — 2)|*
= (L4 0i)llon — 201 = dkllen—1 — 2I1* + Sk (1 + k) |z — 21|,

Thus, we further get

s = 2l < (14 (1= ar) ) llow — 2I* = (1 = aw) Sellew—1 — 2|

71—0% l—ak

l2zry1 —al|® +2 Ok(Tht1 — Thy Tk — Th—1)

1— o

4 ((1 —an)(1 4 8) — 5%) ek — apa|.

The proof is complete. O

Theorem 4.1 If oy, and i further satisfy (5)-(8), then the sequence {xi} generated by Algorithm 3.1 is weakly
convergent.

Proof Tt follows from Lemma 4.1 and (7) that

l—ak

ekt — 2lI* = (1 — oey1) ks lwe — 212 + (1 — o) [ETr

11—k

< lzw — 2)1* = (1= ar) Sllzn—1 — 2* + (1 — o) ok — zr—1]” — Ak, (13)

where o € (0,1) and Ay is given by

l1—« l1—«
Ak =0 k||$k+1 7.Tk||2 -2 k5k<1‘k+1 — Tk, Tk 71,']@_1)
1—op_ l1—«o
+ ((1—U)T’“—(1—ak)5k(1+5k)+ ka,‘i) e — zp_1 |
-1
Set )
— O —
o = llzk — 21> = (1= o) dllan—1 — 2[° + (1 — o) —— |lay, — 21 |*. (14)
Then
Vi1 < o — Ag. (15)
Consider 1
— X —
or = llze — 2l = (1= an) dllzn—1 — 2> + (1 — o) ——F ||z — zp_1 ||

=|lzp—1 — 2| + 2(@p-1 — 2,2k — Tp—1) + |2 — 21

1—ag 1

— (1= ag) dkllzr—1 — 2> + (1 — o) lzx — z—1)?

= (1= (1 =or) ) len—1 — 2)* + 2{@p 1 — 2,2 — zp1)

1— ap_
+ <1 +(1- 0)¢) lxx — xk,1H2.
Ap—1

Combining this with Lemma 4.1 and the assumption (6)

o <

1 1
—1—ay (1_€_ 1+(1—0)(1—ak,1)/ak,1)
& (l—-e—(1—-ar)d)1+1—-0)1—ag-1)/or—1)>1
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yields
o > e llzp_1 — 2|
Similarly, by Lemma 4.1 and the assumption (8)
l1—ag—
0 < ot \/1 +4((% B )O‘ik + 1)((1 - U) 041:1 ' 1*10% - 1fak)
k> 1 1
2(s — 1)a—k +2
1 1 2 1—ap_1 1 €
& ——1)—+1)0;+ 00— (1— <0
((a )ak+) kot 0k = o) ap_1 1 —ag 1—ar —
1-— 1—ap_ 1—
P ((1 — o) — 2= (1 — )k (1 4 Ok) + ——R 52 — 5)
QL Af—1 g
_ 2
R
«@
k
we can get
Ag > ellzy — zp_1]*

Obviously, from these two relations and (15), we conclude that

lim @y exists = |lxx—1 — z|| (thus ||xx — z||) is bounded; (16)

lim Ak =0 = lim ||$k — SCk_1|| =0. (17)

From «ay, € [e,1 — €] and
B _ (=) dk(rr — or—1) — (Try1 — xk)
(I~ 7)) = o

)

On the other hand, as proved in (16), {z} is bounded in norm, thus there exists at least one weak cluster point

z%°, i.e.,

r, = 27,

(18)

Finally, since I — N is continuous and monotone, it must be maximal monotone. In view of Lemma 2.2, (I —

N)(z*°) =0.
Denote

o (2) = lloe — 21> = (1 — aw)dkf|zi—1 — 2°.

Then, it follows from (14), (16) and (17) that lim ¢ (2) exists as well.

Below, we show that {x}} weakly converges to z°°. Let 27° and 2z5° be two weak cluster points of {zy}. Then,

repeating the arguments above yields that z7° and z5° are solutions. Correspondingly, we set
I == lim¢g(25°), i=1,2.
Consider

ek — 255017 — (1 — aw) Sk |- — 25° |1
=lze — 25717 — 2(mr — 25°, 28° — 25°) + |27 — 25|

— (1= ar)d (w1 = 2117 = 21 — 28°,28° — 25°) + 2° - 5°)°)

=llor = 25°11% = (1 = aw) Sullen—1 — 25°|1* — 2(zn — 257, 27 = 25°) +2(1 — ) S fan—1 — 25°, 27° —

+ (1= (1= ar)dp)|25° — 25°||°
> ||lzk — 25°11° — (1 — o) Sk llwn—1 — 25°||° — 2wk — 25°, 25° — 25%) + 2(1 — ok )Ok (w1 — 25°, 25°
+ell2° - 257017
where the inequality follows from (6), which indicates
(1—ak)6k S 1—e.

Meanwhile

<xk*1 - ZSO’ZTO - Z§O> = (.’L‘k - z2007zf0 - Z2OO> - <.’L‘k - mk*lazloo - Z§O>

23)

_Z§°>
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Combing this with (17) and taking the limit along k € Ni, where A7 such that {zx} along k € N7 weakly
converges to z5°, we get

1 > 12 +6||z100 — ZQOO”Q

Similarly, we also get

lp > 11 +e|25° — 27| %

Adding these two inequalities yields 27° = 25° and {z} converges weakly. |

5 Conclusions

In this article, we have studied a directed Krasnosel’skii-Mann iteration in real Hilbert spaces. By invoking new,
self-contained, and simplified techniques, we prove its weak convergence. Notably, our new upper bounds on
directed factors are desirably larger than existing ones, assuming that the involved factors remain constant.

At the end of this article, it shall be specially stressed that our new techniques would be a widely used tool
in enlarging upper bounds on directed factors in context of some splitting methods (cf. [8, 4]). The resulting
directed splitting methods can be more efficient in practice [8, 4] than those inertial ones (cf. [2, 6, 11, 10]), but

with more direct and much simpler convergence analysis.
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36 iterative scheme for locating fixed points of non-expansive operators in real
37 Hilbert spaces. The distinctive characteristic of the KM iteration is that the
38 new iterate is obtained as a convex combination of the current iterate and its
operator evaluation.

a1 Recently, [3, 4] investigated an accelerated version of the KM iteration,
42 incorporating an additional term that involves a nonnegative factor and the
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regarding this factor are less restrictive compared to those [3], and they are
independent of the iterates themselves.

The objective of this note is to introduce significantly different assumptions
regarding the aforementioned factor. As illustrated below, these assumptions
are weaker than those [4] and remarkably enable a new, concise, self-contained,
and simplified proof of the weak convergence of the accelerated KM iteration.
Impressively, unlike the proof of [4, Theorem 1], this proof no longer relies on
the seminal result [5, Lemma 2.3].

2 Preliminaries

In this section, we first give some basic definitions and then provide some
auxiliary results for later use.
Let H be an infinite-dimensional real Hilbert space equipped with the
standard inner product (z,y) and the induced norm |z| = \/(z, z) for 2,y € .
An operator T' : ‘H — H is said to be non-expansive if it satisfies the

inequality:
IT(x) =Tl < llz -yl

for all x,y in H.

The Krasnosel’skii-Mann (KM) iteration is defined as follows:
Try1 = (1 —ap)zp + o T(zr), k=0,1,...,

where the coefficient oy, € [0, 1] and the series > ay(1 — ) diverges. Refer to
[6-8] for relevant discussions and the cited references.

To accelerate the KM iteration, [3] proposed the following modification:
Thy1 = (1 — (Jék)l‘]~C =+ akT(xk) + (1 — ak)ék(mk — xk—l),

where d; > 0 and z_1 := zg.

For weak convergence, the following assumptions were introduced in [4]:

e<ap <1, 0<0,<1, (I—ag—1)0k—1 < (1—ag)dg,

<O%1_1 _ 1) (1—651) — (2 - aik - ak> 52— (alk _ ak) se (1)

where € is a given sufficiently small positive number.
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Fig. 1: The graphs of h; and h,

3 Results

In this section, we propose accelerated KM iteration, and we suggest new and
weaker assumptions for analyzing weak convergence.

First of all, we would like to point out that, by our numerical experiments
[4], i, in the KM iteration shall be close to 1 for numerical efficiency in practice
and weak convergence in theory. Thus, we give a practical, accelerated KM
iteration — Algorithm 3.1.

Algorithm 3.1 a practical, accelerated KM iteration

1: Choose z_1 = 29 € H. Choose € = 1072 and « € [0.80,0.99]. Compute h1(c) via (2),
and denote by 61. Choose §_1 = 0. Set k := 0.

2: Choose 6, € [6x_1,T]. Compute
Tp+1 = (L — @)z + aT(zk) + (1 — ) b (zh — T—1)-

Set k:=k+ 1.

To provide a better understanding of the practical, accelerated KM itera-

tion, we define hy(«) and ho(«) as follows.

1 1
ha(Q) = S
2(0[) 1_a< € 1+§1aa)7

where ¢ = 1079, and the graphs of h1(a) and ha(a) are plotted in Fig. 1 using
MATLAB. Also, it is direct to check that

S < hy(a) < = < hala), a € [0.80,0.99]. (3)
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Below, we describe the accelerated KM iteration in a general case of oy, €
[e,1 —¢], for a given sufficiently small positive number &.

For the following accelerated KM iteration
Tpy1 = (1 — ak)xk + OékT(l'k) + (]. — ak)ék (:L’k — 1’]671), k=0,1,.., (4)

with a_1 = ag in [g,1 — ¢] and §_; = 0, we assume that, (i) the sequences
{ag} and {45} satisfy

ap € [E, 1 —6}, 5k > (5]@,1(1 — Oékfl)/(]. — Oék); (5)
(ii)
L 142 - D + DA - o) 5t e — 50)
5 =05 V - o e el

(2 -1z +1
G e (R e T riervanycvard SO

where o is chosen in (0,1) in advance.

Unlike (1), the corresponding assumption (6) no longer includes 6y—1. This
fully shows that they are widely different.

Obviously, for this accelerated KM iteration described by (4)-(6), it reduces
to Algorithm 3.1 provided that a; = a and o = 1/3.

Notice that, the extra variable o in (6) shall be chosen to maximize the
min function defined in the interval (0,1). See Remark 3.2 and Fig. 2 below
for more details.

In the analysis of weak convergence for the accelerated KM iteration given

by (4)-(6), we make use of the following lemmas to simplify the analysis.
Lemma 3.1 Assume that o > 0. If 4a8 > ~?, then

alla|®* + Bb||* + v {a,b) >0, Va,bc H.
Lemma 3.2 ([9, Sect. 3]) Let a >0, t € R. If 4a > 283, then the following

— _ 2 t232
> QOO IEXET (o) 4 ul?)

(z, ax) + (u, fu) — t{x, fu)

holds for all x, u € H.

Using these lemmas, we can establish the weak convergence of the acceler-
ated KM iteration.
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Theorem 3.1 The sequence {xy} generated by Algorithm 3.1 converges weakly
to a fized point of T'.

For Theorem 3.1, we decide to omit its proof details here. This is because
that (i) it can be viewed as an instance o = 1/3 of that of the next theorem
and (ii) the statement ”Choose 0y € [dx—1,d"]” in Algorithm 3.1 corresponds
to (5) and (6); see Fig. 1 and the desired inequality (3).

Theorem 3.2 If the assumptions (5)-(6) hold, then the sequence {x} gener-
ated by (4) converges weakly to a fixed point of T.

Proof In view of (4), we have

Ty =k + 0k (Th — Tp—1), (7)

Tpp1 = (1 — ag) &k + o T(zp). (8)
For any given fixed point z of T, i.e., T'(z) = z, it follows from (8) that
Tpt1 — 2= (1 —ap)(@x — 2) + a (Txp, — Tz2).
Since T is non-expansive, we have
k1 = 2 = ap||Toe = Tz|” + (1 — ax) || @ — 2)|* — ar (1 — ap) | Tz — 2|
<agllog — 2l + (1 —an)l|zr — 2)1* — ar(l — )| T — &>
From (8) and (7), we have
ap(Txy — Tp) = Tpg1 — Tk = Thyr — T — Op(T — Tp—1),
so, we get
aj [Tz — ax?
= ||wpr1 — ok |® + 0 llok — zp-1]|® — 20k (Tpy1 — T, Th — T—1)-
Observe that
&% = 2l* = [[(1 + 6%) (wx — 2) — Sk (zr—1 — 2)]|*
= (L4 0)llen — 211% = dullwr—1 — 2[1* + 64 (1 + 8p) lz — wp—1 1.
Thus, we further get

21 = 21> < (14 (1= ar) d) |z — 2l = (1 — )k [lew—1 — 2|12

1—a 1 —ay

|1 — x> + 2 Ok {Thy1 — Ty Tk — Th—1)

1— oy

+ ((1 — ag)dk(1+ ) — 6,%) g — 2p—1 ]



O©CoO~NOOOITA~AWNPE

6 Yunda Dong

From the assumption (5), we have

1— oy
@kt — z]?

[#r1 — 2)1* = (1 = Qhg1) S lze — 2] + (1 — o)

1 —apq

< lag — 2[1> = (1 = o) S llww—1 — 2|1> + (1 — o) 2k — zr—1]* — A,

(9)
where o € (0,1) and Ay, is given by

lfozk lfozk.

Ak =0 ||17k+1 - .Iik||2 -2
Qg

Ok (Th1 — Ty T — Th—1)

1— oy l -«
+ ((1—0)“_(1_ak>5k(1+5k)+ kél%) ok — k|-
k-1 @
Set
) 9 1— o1 2
or = [k = 217 = (1= ap) o flan— = 217 + (1 = o) ———lz), — zp- ",
Then
Prr1 < i — A (10)
Consider
1—ap_
or =z — 2l = (1 — o) S llon—r — 2l + (1 — o) ———||ag — w1

= |lwr—1 — 2l + 2(zp—1 — 2,26 — 2p—1) + [lzk — 281 |

1—ak

= (1= o) Opllzn—1 — 2>+ (1 - o) 2 — zp—1]?

= (1 —(1—ap)op) |lorr — 2||* +2(xp_1 — 2,25 — Tp_1)

1—oap_
+ (1 +(1- a)’“> @ — 21>
a1

Combining this with Lemma 3.1 and the assumption (6)

1 1
Ok < 1— o (1_5_ 1+(1a)(1ak_1)/ak_1)’
& (l—e—(1—ap)d) A+ 1 —0)1—ag_1)/ar_1)>1

yields

o > € |lzp—1 — 2%
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Similarly, by Lemma 3.1 and the assumption (6)

1 1 P N
6]6 S 0.5 — \/1 + 4((; B 1)0477@ + 1)((1 - U) ockfll T—ar 1—€ozk)

1 1
C-nl+1
1 1 l—ap_1 1 €
& = 1) — 1)+ 65— (1— ’ <0
<(0' )ak+ > kT Ok ( U) oap—1 1 —oay 1—ap —
1—ak( 1_0%—1 1—(Jék2 )
&S o 1—0)——— — (1 — ag)dp(1 + o) + 6 —¢
- ( )akfl ( k)0k (1 + k) o Ok
_ 2
> Cha,
Qe
we can get

Ap > ez — xk,1||2.
Obviously, from these two relations and (10), we conclude that

lim @y exists = ||zg—1 — 2| (thus ||zx — z]|) is bounded in norm;

lim A, =0 = lim |z — 21| = 0.

From (5) and

(I = T)(ax) = (1 —an)bp(rr — 2p—1) — (Thy1 — !JCk:)7
g
it is not difficult to follow [10, Theorem 3.1] to complete the proof. O

Remark 3.1 Next, we numerically demonstrate the assumption (6) to some
extent. For brevity, we simply set a = «, J; = 4. Then the assumption (6)

above reduces to

—11+4((E - DL+ 1)1 -0)
(-1 +1

1
(03
)

5T :=05

6<min{6+, lia (1— 1+(10§(10¢)/o¢)} — f(0). (1)

Be aware that, in contrast to (6), we no longer introduce the extra ¢ above

because we turn to resort to Lemma 3.2. In addition, we have replaced < there
by < here.

Numerical demonstration of (11) is given in Table 1, where dpew stands
for a slightly lower approximation of the maximum of f in (11) with respect
to 0. We also provide the values from [4, Table 1] for comparison.

From Tables 1 and 2, we can observe that our computed values of dey are
consistently larger than the corresponding values from [4, Table 1] for each

sampling point.
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Table 1: Numerical demonstration of (11) with respect to o

o 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99
dnew | 0.4397 0.4230 0.4075 0.3930 0.3795 0.3668 0.3549 0.3437 0.3353
o 0.49 0.46 0.45 0.42 0.40 0.38 0.36 0.34 0.33
for 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
dnew | 0.6394 0.6389 0.6038 0.5730 0.5455 0.5206 0.4978 0.4769 0.4575
o 0.75 0.70 0.66 0.63 0.61 0.58 0.56 0.54 0.50

Table 2: Numerical demonstration of [4, Table 1]

« 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99

6— | 0.4105 0.3983 0.3870 0.3765 0.3668 0.3576 0.3490 0.3410 0.3348

a 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

6- | 0.6143 0.5746 0.5426 0.5157 0.4927 0.4725 0.4545 0.4384 0.4239

Fig. 2: The graph of f(o) for different «

o 0.1 0z 03 0.4 o5 0.6 0.7 o8 o.s 1

Remark 3.2 For the KM iteration, choosing « close to 1 in its accelerated and
inertial versions [4, 10] is generally a good strategy. In this case, it is noted
that selecting o to be equal to or close to 1/3 has been found to be a favorable
choice; see Table 1 and Fig. 2.
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