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Abstract

A family of operator splitting methods for maximal monotone operators is inves-
tigated. It generalizes the Douglas–Peaceman–Rachford–Varga class of methods
in the way that it allows the scaling parameters to vary from iteration to iteration
non-monotonically. Conditions for convergence of methods within this family
and for obtaining a linear rate of convergence are given. These conditions cover
more general cases than existing ones.
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1. Introduction

For a real Hilbert space H and maximal monotone operators A : H ⇒ H and
B : H ⇒ H let us consider the inclusion

0 ∈ A(x) + B(x). (1)

This problem serves as a framework for the design and analysis of methods for
definite linear systems, convex programs, monotone variational inequalities, and
more general monotone inclusions, for examples see [14, 15].

The Douglas-Peaceman-Rachford-Varga (DPRV) class of iterative methods
is one of the fundamental approaches for solving (1). In each iteration a method
of this class performs the following two steps to obtain xk+1 ∈ H from xk ∈ H,
where γk > 0 and µ > 0 are parameters discussed later.
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(a) Choose ak ∈ A(xk) and determine (yk, bk) ∈ graph B so that

yk + µbk = xk − µak. (2)

(b) Choose γk > 0 and determine (xk+1, ak+1) ∈ graph A so that

xk+1 + µak+1 = xk + µak − γk(xk − yk). (3)

For the case of systems of positive definite linear systems the above scheme is
also called alternating direction implicit method. In particular, it is known as
Douglas-Rachford method if γk = γ := 1 and as Peaceman-Rachford method
for γk = γ := 2, see [1, 12]. Motivated by Wachspress and Habetler [16], Varga
[15, Chapter 7] suggested to combine both methods by means of the parameter
γk = γ ∈ (0, 2]. Later, Kellogg [7] and Lieutaud [9] extended the Peaceman-
Rachford and the Douglas-Rachford method, respectively, to single-valued non-
linear maps. In [10], Lions and Mercier analyzed convergence properties of these
and further methods in the DPRV class in the case when A and B are multi-valued
maximal monotone maps in a Hilbert space. The above exposition of the DPRV
class (that is different but equivalent to the exposition in [10]) can be found in
[3, 5].

The use of variable scaling parameters µk instead of a fixed parameter µ can
accelerate the convergence speed. Therefore, it would be desirable to have a
convergence theory that allows to modify the scaling parameter µ from iteration
to iteration. Recently, He et al. [6] provided a technique for varying the scaling
parameter including convergence properties for a special operator splitting for
continuous monotone variational inequalities. More in detail, given a nonempty
closed convex set Ω ∈ Rn and a continuous monotone map F : Rn → Rn, the
operator splitting in [6] is done by rewriting the variational inequality as the
inclusion

0 ∈ F(x) + NΩ(x),

where NΩ : Rn ⇒ Rn denotes the normal cone operator.
For problem settings more general than the one used by He [6], known con-

vergence results related to the DPRV class keep µ fixed for all iterations, see
[2, 4, 8, 10]. In this paper we aim at filling this gap. The DPRV family with vari-
able scaling we are going to analyze is based on the variable scaling technique
introduced in [6]. However, in contrast to the restricted setting in [6] we will
deal with possibly multi-valued maximal monotone operators A and B in finite
or infinite dimensional Hilbert spaces. By proof techniques different from that
in [6] we obtain convergence results which are valid for a much broader class of
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inclusions and a larger variety of splitting possibilities, see Section 4. Moreover,
in Section 5, the first time for DPRV methods with variable scaling parameters,
results on the convergence rate are given.

2. Preliminaries

We first review some basic definitions and then provide some auxiliary results
for later use.

Let ⟨ , ⟩ : H × H → R denote the inner product of the Hilbert space H and
∥ · ∥ : H → [0,∞) the norm induced by the inner product. For a given (possibly
multi-valued) operator T : H ⇒ H, graph T := {(x, y) ∈ H × H | y ∈ T (x)}
denotes the graph of T and T−1 its inverse, i.e., T−1(y) := {x ∈ H | y ∈ T (x)} for
any y ∈ H. By I : H → H the identity operator is denoted.

Definition 1. An operator T : H ⇒ H is called monotone if

⟨x − y, ξ − η⟩ ≥ 0

holds for all (x, ξ), (y, η) ∈ graph T . A monotone operator T : H ⇒ H is said to
be maximal monotone if, for any (x0, ξ0) ∈ H × H,

⟨x0 − y, ξ0 − η⟩ ≥ 0 for all (y, η) ∈ graph T implies (x0, ξ0) ∈ graph T,

i.e., the graph of T cannot be enlarged without destroying monotonicity.

Definition 2. An operator T : H ⇒ H is called α-monotone if α ≥ 0 exists so
that

⟨x − y, ξ − η⟩ ≥ α∥x − y∥2

holds for all (x, ξ), (y, η) ∈ graph T .

Obviously, an operator T : H ⇒ H is monotone if and only if it is 0-
monotone. If T is α-monotone with α > 0 then it is usually called strongly
monotone with modulus α in the literature. To say that A : H ⇒ H is α-monotone
and B : H ⇒ H is β-monotone we say, for short, that (A, B) is (α, β)-monotone.

Definition 3. A single-valued map T : H → H is called Lipschitz continuous
with modulus L > 0 if

∥T (x) − T (y)∥ ≤ L∥x − y∥
holds for all x, y ∈ H.
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Lemma 1. Let a summable sequence {τk} ⊂ [0, 1) and a sequence {µk} ⊂ (0,∞)
be given so that

(1 − τk)µk ≤ µk+1 ≤ (1 + τk)µk (4)

holds for all k ∈ N. Then there are numbers l > 0 and u > 0 so that

l µ0 ≤ µk ≤ u µ0 for all k ∈ N. (5)

Proof. Since {τk} is summable there is k0 ∈ N so that

(1 − τk) ≥ (1 + 2τk)−1 for all k ≥ k0.

Therefore, by (4),

µk+1 ≥ µ0

k∏
i=0

(1 − τi) ≥ µ0

k0−1∏
i=0

(1 − τi)
k∏

i=k0

(1 + 2τi)−1 =: µ̃k

follows for all k ∈ N with k ≥ k0 ≥ 1. Moreover, we have

ln
k∏

i=k0

(1 + 2τi)−1 = −
k∑

i=k0

ln(1 + 2τi) ≥ −
k∑

i=k0

2τi

for k ≥ k0. Thus, because {τk} is summable, {µ̃k} is bounded below by some
positive number. Since {µ̃k} decreases monotonically it converges to some µ̃ >
0. Therefore, the left inequality in (5) follows. The right one can be proved
similarly taking into account that ln(1 + τi) ≤ τi.

Lemma 2. Let sequences {αk}, {βk}, {ck} ⊂ [0,∞), and a summable sequence
{λk} ⊂ [0,∞) be given. If

αk+1 ≤ (1 + λk)αk − ckβk (6)

holds for all k ∈ N then

(i) the sequence {αk} converges and

(ii) lim inf
k→∞

ck > 0 implies lim
k→∞
βk = 0.

Proof. (i) Because the nonnegative sequence {λk} is summable, it follows that

p :=
∞∏

i=0

(1 + λi) < ∞
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and furthermore, by (6), {ck} ⊂ [0,∞), and {βk} ⊂ [0,∞), that

αk+1 ≤ α0

k∏
i=0

(1 + λi) ≤ α0 p for all k ∈ N. (7)

Thus, the sequence {αk} is bounded. By (6), the nonnegativity of ck and βk, and
(7), we obtain

αk+1 − αk ≤ λkαk ≤ α0 pλk.

Therefore,

αk+ℓ − αk ≤ α0 p
k+ℓ−1∑

i=k

λi (8)

holds for all k, ℓ ∈ N with ℓ ≥ 1. Since we already know that the sequence {αk}
is bounded it has at least one cluster point, say α̂1. Let us assume that there is
another cluster point α̂2 with α̂2 > α̂1. Then, taking into account the summability
of {λk}, we can choose k, ℓ ∈ N so that

1
2

(α̂2 − α̂1) ≤ αk+ℓ − αk, and α0 p
k+ℓ−1∑

i=k

λi ≤
1
4

(α̂2 − α̂1).

This contradicts (8). Furthermore, if we assumed α̂1 > α̂2 similar arguments
would lead to a contradiction as well. Hence, α̂1 = α̂2 follows, i.e., the sequence
{αk} converges.

(ii) According to (6), we have

ckβk ≤ (1 + λk)αk − αk+1 for all k ∈ N.

Taking into account {αk}, {λk} ⊂ [0,∞), (7), p ≥ 1, and the summability of {λk}
we obtain

k∑
i=0

ciβi ≤ α0 +

k∑
i=0

λiαi ≤ α0 + α0 p
∞∑

i=0

λi < +∞.

Let us assume that there are β̂ > 0 and an infinite set N ⊆ N so that βi ≥ β̂ for all
i ∈ N. Then, by {ck}, {βk} ⊂ [0,∞),

β̂
∑
i∈N

ci ≤ α0 + α0 p
∞∑

i=0

λi < +∞

follows. Obviously, this contradicts the assumption that lim infk→∞ ck > 0.
Hence, limk→∞ βk = 0 follows.
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The next lemma can be derived from [4, Proposition 4] for the case when H
has infinite dimension. If H is finite-dimensional the weak convergence of a
sequence is equivalent to its strong convergence so that the result in the lemma
follows immediately from the closedness of graph A and graph B.

Lemma 3. Let A, B : H ⇒ H be maximal monotone operators and suppose
that A + B is maximal monotone or that H is finite-dimensional. Moreover, sup-
pose that there are sequences {(xk, ak)} ⊂ graph A and {(yk, bk)} ⊂ graph B and
elements x∞, a∞ ∈ H so that

(xk, ak) ⇀ (x∞, a∞),
(yk, bk) ⇀ (x∞,−a∞),
(xk − yk, ak + bk) → (0, 0)

for k → ∞. Then, 0 ∈ A(x∞) + B(x∞).

3. The DPRV family with variable scaling

We now formally describe an algorithm for solving problem (1) which, due
to the possible choices of parameters, describes the DPRV family with variable
scaling.

Variable Scaling DPRV Algorithm

Step 0. Choose x0 ∈ H and µ0 ∈ (0,∞). Set k := 0.
Step 1. Choose ak ∈ A(xk) and determine (yk, bk) ∈ graph B so that

yk + µkbk = xk − µkak. (9)

If xk = yk then stop.
Step 2. Choose γk > 0 and determine (xk+1, ak+1) ∈ graph A so that

xk+1 + µkak+1 = xk + µkak − γk(xk − yk). (10)

Step 3. Choose τk ∈ [0, 1) and µk+1 ∈ [(1 − τk)µk, (1 + τk)µk].
Set k := k + 1, and go to Step 1.

Remark 1. By a result of Minty [11] it is well known that, for any maximal
operator T : H ⇒ H, the inclusion r ∈ z + µT (z) has a unique solution for arbi-
trarily chosen r ∈ H and µ > 0. Thus, since A and B are assumed to be maximal
monotone, yk in Step 1 and xk+1 in Step 2 are uniquely defined. Moreover, the
above algorithm is always well defined.
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Remark 2. Due to Lemma 1, the scaling parameters µk generated by the above
algorithm stay in the interval [µ0l, µ0u], where l and u depend on the sequence
{τk}. In [6] the scaling parameters were allowed to vary according to

µk+1 ∈ [µk/(1 + τk), (1 + τk)µk]

Since (1 − τk)µk ≤ µk/(1 + τk) for any τk ∈ [0, 1), the scaling condition in Step 3
of the algorithm is a bit more flexible than the one in [6].

Finally, we note that it is even possible to replace the rule for choosing µk+1

in Step 3 by
µk+1 ∈ [µ0l, (1 + τk)µk],

where l > 0 is arbitrarily small but fixed. Then, all results in Sections 4 and 5
remain valid.

4. Convergence

In this section we will provide conditions under which the Variable Scaling
DPRV Algorithm converges to a solution of the inclusion (1). Our approach
extends He’s convergence result [6] to a much more general case. In particular,
none of the operators A and B has to be single-valued or even continuous.

The next lemma characterizes fundamental relations between some of the
sequences generated by the Variable Scaling DPRV Algorithm.

Lemma 4. Let A, B : H ⇒ H be maximal monotone operators. Moreover, sup-
pose that the pair (A, B) is (α, β)-monotone with α, β ≥ 0 and that the inclusion
(1) has at least one solution. Then, the following assertions hold:

If the Variable Scaling DPRV Algorithm stops in Step 1 then xk is a solution
of (1). Otherwise, for any solution x∗ of (1) there is a∗ ∈ A(x∗) so that the iterates
generated by this algorithm satisfy

∥xk+1 − x∗ + µk+1(ak+1 − a∗)∥2 ≤ (1 + τk)2∥xk − x∗ + µk(ak − a∗)∥2
−γk(2 − γk)∥xk − yk∥2 − 2γkµk∆k

(11)

for all k ∈ N with ∆k given by

∆k := α∥xk − x∗∥2 + β∥yk − x∗∥2. (12)

Proof. If the algorithm stops in Step 1 we have xk = yk for some k ∈ N. By (9)
this implies bk = −ak so that 0 = ak + bk ∈ A(xk) + B(xk) follows and, hence, xk

is a solution of (1).
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Let us now consider the case when the algorithm never stops and let k ∈ N
be arbitrarily chosen. Since x∗ is a solution of (1), there are a∗, b∗ so that

a∗ + b∗ = 0.

By (9), we also have
bk = µ−1

k (xk − yk) − ak.

Thus, the β-monotonicity of B yields

β∥yk − x∗∥2 ≤ ⟨yk − x∗, bk − b∗⟩ = ⟨yk − x∗, µ−1
k (xk − yk) − (ak − a∗)⟩.

Using the latter and the α-monotonicity of A, we obtain

⟨xk − yk, xk − x∗ + µk(ak − a∗)⟩
= ⟨xk − yk, xk − yk⟩ + ⟨xk − yk, yk − x∗ + µk(ak − a∗)⟩
= ∥xk − yk∥2 + µk⟨xk − x∗, ak − a∗⟩ + µk⟨x∗ − yk, ak − a∗⟩ + ⟨xk − yk, yk − x∗⟩
≥ ∥xk − yk∥2 + µkα∥xk − x∗∥2 + µk⟨yk − x∗, µ−1

k (xk − yk) − (ak − a∗)⟩
≥ ∥xk − yk∥2 + µk∆k.

By (10) and the inequality just derived, we get

∥xk+1 − x∗ + µk(ak+1 − a∗)∥2

= ∥xk − x∗ + µk(ak − a∗) − γk(xk − yk)∥2

≤ ∥xk − x∗ + µk(ak − a∗)∥2 + γ2
k∥xk − yk∥2

−2γk⟨xk − x∗ + µk(ak − a∗), xk − yk⟩
≤ ∥xk − x∗ + µk(ak − a∗)∥2 − γk(2 − γk)∥xk − yk∥2 − 2γkµk∆k.

(13)

The condition for choosing µk+1 in Step 3 of the algorithm provides 0 < µk+1 ≤
(1 + τk)µk. This and the monotonicity of A imply

∥xk+1 − x∗ + µk+1(ak+1 − a∗)∥2

= ∥xk+1 − x∗∥2 + µ2
k+1∥ak+1 − a∗∥2 + 2µk+1⟨xk+1 − x∗, ak+1 − a∗⟩

≤ (1 + τk)2∥xk+1 − x∗∥2 + (1 + τk)2µ2
k∥ak+1 − a∗∥2

+2(1 + τk)µk⟨xk+1 − x∗, ak+1 − a∗⟩
= (1 + τk)2∥xk+1 − x∗ + µk(ak+1 − a∗)∥2.

Combining this and (13) yields the desired result.
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Theorem 1. Let the assumptions of Lemma 4 be satisfied. Moreover, suppose
that the sequence {τk} is summable and that the Variable Scaling DPRV Algo-
rithm never stops. Then, the following assertions hold:

(a) If A + B is maximal monotone and if

lim inf
k→∞

γk(2 − γk + µk min{α, β}) > 0, (14)

then the sequence {xk} converges weakly to a solution of (1).

(b) If γ̄ ≤ γk ≤ 2 for all k ∈ N with some γ̄ > 0 and if α + β > 0, then the
sequence {xk} converges strongly to the unique solution of (1).

Proof. (a) Let x∗ denote any solution of (1). Then, with ∆k defined in Lemma 4,
it can easily be verified that

1
2

min{α, β}∥xk − yk∥2 ≤ α∥xk − x∗∥2 + β∥yk − x∗∥2 = ∆k

holds for all k ∈ N. Thus, Lemma 4 implies for some a∗ ∈ A(x∗) that

∥xk+1 − x∗ + µk+1(ak+1 − a∗)∥2

≤ (1 + τk)2∥xk − x∗ + µk(ak − a∗)∥2 − γk(2 − γk + µk min{α, β})∥xk − yk∥2

for all k ∈ N. To apply Lemma 2 let us define

αk := ∥xk − x∗ + µk(ak − a∗)∥2, βk := ∥xk − yk∥2,
ck := γk(2 − γk + µk min{α, β}), λk := 2τk + τ

2
k

for all k ∈ N. Since the sequence {τk} is assumed to be summable, the sequence
{λk} must be summable, too. Hence, taking into account (14), Lemma 2 yields
that

(i’) the sequence {∥xk − x∗ + µk(ak − a∗)∥} converges and

(ii’) limk→∞(xk − yk) = 0.

Since
αk = ∥xk − x∗∥2 + µ2

k∥ak − a∗∥2 + 2µk⟨xk − x∗, ak − a∗⟩
the monotonicity of A, (i’), and µk ≥ lµ0 > 0 for all k ∈ N (by Lemma 1) imply
that {xk} and {ak} are bounded. Hence, there is a weak cluster point of {(xk, ak)},
say (x∞, a∞), and an infinite set N ⊆ N so that

(xk, ak)⇀ (x∞, a∞) for k ∈ N, k → ∞. (15)
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Using (9), (ii’), and again µk ≥ lµ0 for all k ∈ N we obtain

lim
k→∞

(xk − yk, ak + bk) = (0, 0). (16)

Thus, because of (15), we have

(yk, bk)⇀ (x∞,−a∞) for k ∈ N, k → ∞. (17)

Taking into account (15), (17), (16), and that A + B is assumed to be maximal
monotone, we get from Lemma 3 that 0 ∈ A(x∞)+B(x∞), i.e., x∞ solves inclusion
(1).

To show that the sequence {xk} weakly converges to x∞ let x∞1 and x∞2 denote
two weak cluster points of {xk}. Then, repeating the arguments above yields that
x∞1 and x∞2 solve inclusion (1). Moreover, (i’) still holds true if (x∗, a∗) is replaced
by (x∞i , a

∞
i ) with an appropriate a∞i ∈ A(x∞i ), i = 1, 2. Thus, the limits

li := lim
k→∞
∥xk − x∞i + µk(ak − a∞i )∥2 for i = 1, 2

exist. By the monotonicity of A, it follows that

∥xk − x∞2 + µk(ak − a∞2 )∥2

= ∥xk − x∞1 + µk(ak − a∞1 )∥2 + ∥x∞1 − x∞2 + µk(a∞1 − a∞2 )∥2

+2⟨xk − x∞1 + µk(ak − a∞1 ), x∞1 − x∞2 + µk(a∞1 − a∞2 )⟩
≥ ∥xk − x∞1 + µk(ak − a∞1 )∥2 + ∥x∞1 − x∞2 ∥2

+2⟨xk − x∞1 + µk(ak − a∞1 ), x∞1 − x∞2 + µk(a∞1 − a∞2 )⟩.

Taking the limit for those k ∈ N belonging to the subsequence of {(xk, ak)} that
weakly converges to (x∞1 , a

∞
1 ), we get

l2 ≥ l1 + ∥x∞1 − x∞2 ∥2.

A similar reasoning yields

l1 ≥ l2 + ∥x∞1 − x∞2 ∥2.

This implies x∞1 = x∞2 . Therefore, {xk} converges weakly to some solution x∞ of
inclusion (1).

(b) For γk ∈ [γ̄, 2] Lemma 4 provides

∥xk+1 − x∗ + µk+1(ak+1 − a∗)∥2 ≤ (1 + τk)2∥xk − x∗ + µk(ak − a∗)∥2 − 2γ̄µk∆k
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for any solution x∗ of (1) with some a∗ ∈ A(x∗).
If α > 0 then the above definitions of αk and λk, the definition of ∆k in Lemma

4, and the fact that µk is bounded below by lµ0 (Lemma 1) lead us to

αk+1 ≤ (1 + λk)αk − 2γ̄lµ0α∥xk − x∗∥2.

Setting βk := ∥xk − x∗∥2 and ck := 2γ̄lµ0 for all k ∈ N we obtain from (ii) of
Lemma 2 that {βk} converges to 0, i.e., {xk} converges strongly to x∗.

If β > 0, it follows with a similar reasoning (just ∥xk − x∗∥ has to be replaced
by ∥yk − x∗∥) that {yk} converges strongly to x∗. Because of (ii’) within part (a) of
this proof, we also obtain strong convergence of {xk} to x∗.

Remark 3. If H is finite dimensional then condition (14) can be replaced by the
weaker requirement that

∞∑
k=0

γk(2 − γk + µk min{α, β}) = +∞.

To see this we first note that under the conditions of Lemma 2 we also get that∑∞
i=0 ck = +∞ implies lim infk→∞ βk = 0. With this and ideas in part (a) of the

proof of Theorem 1, one can show that a subsequence of {(xk, ak)} converges to
(x∞, a∞), where x∞ solves (1) and a∞ ∈ A(x∞). Now, using (x∞, a∞) instead of
(x∗, a∗) in the beginning of part (a) of the proof of Theorem 1, we obtain that
αk = ∥xk − x∞ + µk(ak − a∞)∥2 goes to 0. The monotonicity of A then implies that
∥xk − x∞∥ converges to 0. Thus, xk converges to x∗.

Remark 4. It is interesting to note that if min{α, β} > 0 part (a) of Theorem 1
provides convergence properties of {xk} for cases (depending on min{α, β}) when
γk is chosen larger than 2.

5. Convergence rate

The following theorem will provide the basic means for obtaining global
R–linear convergence rate results for the Variable Scaling DPRV Algorithm by
specifying conditions on the parameters within the algorithm as well as on (α, β).

Theorem 2. Let the assumptions of Lemma 4 be satisfied. If, in addition, α +
β > 0, A is single-valued and Lipschitz continuous with modulus L > 0, and
{γk} ∈ (0, 2], then there is C > 0 so that the iterates generated by the Variable
Scaling DPRV Algorithm satisfy

∥xk+1 − x∗∥2 ≤ C
k∏

i=0

((1 + τi)2 − qi) (18)
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for all k ∈ N, where x∗ denotes the unique solution of (1) and

qi :=
γi(2µiα +min{2 − γi, 2µiβ}/2)

(1 + µiL)2 for i ∈ N.

Proof. By α + β > 0 the operator A + B is strongly monotone and, thus, the
inclusion (1) has a unique solution. Throughout the proof let k ∈ N be arbitrary
but fixed.

Noting that e2 + f 2 + 2e f ≤ 2(e2 + f 2) holds for all e, f ∈ R and having
xk − x∗ = xk − yk + yk − x∗ in mind, we obtain

∥xk − x∗∥2 ≤ ∥xk − yk∥2 + ∥yk − x∗∥2 + 2∥xk − yk∥∥yk − x∗∥
≤ 2(∥xk − yk∥2 + ∥yk − x∗∥2)

and, as a consequence,

−(2 − γk)∥xk − yk∥2 − 2µkβ∥yk − x∗∥2 ≤ −1
2

min{2 − γk, 2µkβ}∥xk − x∗∥2

since γk ∈ (0, 2]. Therefore, with the definition of ∆k in mind, we get

−(2 − γk)∥xk − yk∥2 − 2µk∆k ≤ −(2µkα +
1
2

min{2 − γk, 2µkβ})∥xk − x∗∥2.

Since A is assumed to be a Lipschitz continuous map with modulus L,

∥xk − x∗ + µk(ak − a∗)∥ ≤ ∥xk − x∗∥ + µk∥ak − a∗∥ ≤ (1 + µkL)∥xk − x∗∥

holds and, with this, we further have

−γk(2 − γk)∥xk − yk∥2 − 2γkµk∆k ≤ −qk∥xk − x∗ − µk(ak − a∗)∥.

By Lemma 4,

∥xk+1 − x∗ + µk+1(ak+1 − a∗)∥2 ≤ ((1 + τk)2 − qk)∥xk − x∗ + µk(ak − a∗)∥2

follows. Hence,

∥xk+1 − x∗ + µk+1(ak+1 − a∗)∥2 ≤ ∥x0 − x∗ + µ0(a0 − a∗)∥2
k∏

i=0

(
(1 + τi)2 − qi

)
must be valid. Exploiting the monotonicity of A, we finally get

∥xk+1 − x∗∥2 ≤ ∥xk+1 − x∗ + µk+1(ak+1 − a∗)∥2 ≤ C
k∏

i=0

((1 + τi)2 − qi)

with C := ∥x0 − x∗ + µ0(a0 − a∗)∥2.
12



Remark 5. In this remark we consider cases where τk = 0 for all k ∈ N, i.e.,
µk := µ is fixed throughout the algorithm. If we set γk = 1 for all k ∈ N (Douglas-
Rachford method), then

∥xk − x∗∥2 ≤ C
(
1 − 2µα

(1 + µL)2

)k

follows from Theorem 2. The rate of convergence just coincides with the one in
[10]. For γk = 2 for all k ∈ N (Peaceman-Rachford) Theorem 2 yields the rate
1− 4µα(1+ µL)−2. If a Lipschitz modulus L of A is known, then setting µ = 1/L
yields

∥xk − x∗∥2 ≤ C
(
1 − γ( α

4L
+

1
8

min{2 − γ, 2β
L
})
)k

.

Furthermore, according to Theorem 2, if A is Lipschitz continuous and B is
strongly monotone then γk = γ ∈ (0, 2) for all k ∈ N provides an R–linear
convergence rate less than 1. This observation seems absent in the literature.
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