Chapter 1

Monotone Mappings

In this chapter, our goal is to review some important results regarding monotone
mappings; most of them will be used in later chapters.

A mapping (also called operator) T : H = H is called set-valued if it corre-
sponds each point x € H to a (possibly empty) subset T'(x) of H. The inverse
of T, denoted by T~ !(y) := {x|y € T(x)}, always exists and, we always have
(T~1)~! = T. The domain of T is defined by

domT := {z|T(x) # 0}
and the range of T is defined by
rgeT := {y|3x: y € T(2)} = domT ™"
When T is single valued, we may write T'(z) = y instead of T'(x) = {y}.

1.1. Maximality of Monotone Mappings. Let’s begin with the definition of

(maximal) monotonicity.

Definition 1.1.1. A mapping T : H = 'H is called monotone if
(-2, y—y ) >0 VyeT(x), Vy € T(a).

It is called mazimal monotone if its graph set {(x,y) € H x H |y € T(z)} can not
be enlarged without destroying monotonicity.

Of course, if the mapping T is single-valued, monotone then the relation above
may be of the form (z — 2/, T'(x) — T'(2’)) > 0 for all x and z’.
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An important example of monotone mappings is the subdifferential 0f of a
proper convex function f. If in addition f is closed then Jf is maximal. Of

particular interest is the indicator function dc of a convex subset C' in H:

5 () 0 if x € C,
x) =
‘ oo ifxz¢C.

The closedness of d¢ is equivalent to the closedness of C. Thus, the normal cone
mapping N¢ := dd¢ to C' is maximal monotone when C is closed convex.
Another important example of monotone mappings is continuous, monotone
mapping. If a monotone mapping is continuous in all of H, then it is maximal
monotone.
The next is the maximality criterion for the sum of two maximal monotone

mappings; see [38, p. 557] for details.

Proposition 1.1.1. Let B, F : H = 'H be mazimal monotone. If
ri(domB) N ri(domF) # 0,

then T := B + F is maximal monotone.

Deep results on this were obtained by Pennanen most recently; see [35] and the

references cited therein.

1.2. Resolvants of Monotone Mappings. We now introduce nonexpansive
mappings, which play a fundamental role in the study of monotone mappings. A

single-valued mapping N is called nonexpansive if
IN(z) = N(@)|| < [le — 2| Va2’ € H.

In his landmark paper [29], Minty established the one-to-one correspondence
between monotone and nonexpansive mappings and used it to prove the following

important facts.

Proposition 1.2.1. Let T : H = H be monotone, and let A > 0. Then the
mapping (I + NXT)~! is monotone and nonexpansive. Moreover, T is mazimal if
and only if dom(I + XT)~' ="H, equivalently, rge(I + XT) = H.

The mappings Jyr := (I + AT)~! for A > 0 above are called the resolvants of

T. Of course, this definition is also applicable to general mappings.
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An interesting and important facts is that the resolvant of the normal cone map-
ping to a nonempty closed convex set C' is equivalent to nothing but the orthogonal
projection onto C: Po = (I + ANg)™L.

For the inverse mappings 7!, their resolvants, also called the Yosida regqular-
izations of T, are related to the resolvants of T' by the following inverse-resolvant
identity [38, p. 540]

(T+ATH =X "Y1 - +27)" Y va>o.

This identity is not only beautiful in form but also useful in practice. For example,

in numerical tests, when 7' = N¢, we can evaluate I — Po rather than (14 Nj h-1,

The following result is due to Lions and Mercier [1979].

Proposition 1.2.2. Let B and F be two mazimal monotone mappings from

all of 'H into itself. Then the mapping
Napr:=dJxpo2r—1)+ I —Jrr)
is nonexpansive. Furthermore, it has the following property for all x, x' € H

|Nx.B.F(x) — Ny p.r(@)|> < (x— 2, Nxpr(z) — Nxpr()).

1.3. Strong Monotonicity and Lipschitz Continuity. Strong Monotonicity
of set-valued mappings dates back to Zarantonello [45]. It plays a crucial role
in earlier analysis of convergence rate of a class of numerical methods, also in
convergence proof of some methods. Lipschitz continuity also plays a similar role

in numerical analysis.
Definition 1.3.1. A mapping T : H = 'H is called strongly monotone with
modulus > 0 if

(@—a'y—y) 2 ullz - 2> VyeT(x), vy € T(a).

Indeed, it is equivalent to the condition that T — pI is monotone.

Definition 1.3.2. Let T : H = H be mazimal monotone. The inverse mapping
T~ is called strongly monotone with modulus v if there exists some v > 0 such
that

(o= y—y) >viy—y|* VyeT(x), vy eT().
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The strong monotonicity of the inverse mapping is also called the Dunn property

or the co-coercivity of T in the literature.

Definition 1.3.3. A mapping T : H = 'H is called Lipschitz continuous with

modulus | if there exists some l > 0 such that
ly =/l <z =2’ VyeT(z), vy € T(z).

It is immediate from the case x = 2’ that Lipschitz continuous mappings must be

single-valued, and the relation above may be simplified to
|T(z) — T <1z —2'| Va, Vo'

For the case [ < 1, T is called a nonexpansive mapping, just mentioned above. For

the case [ < 1, it is called a contractive mapping.

Proposition 1.3.1. Let T : H = 'H be a mapping. Define
NT]:={(z+y, 2 —y)|y € T(x)}.

Then any of the following statements holds

(1) T is monotone if and only if N'[T| is nonexpansive;

(2) T is mazimal monotone if and only if N[T| is a nonexpansive mapping
defined on all of H;

This two statements describe the the one-to-one correspondence between mono-

tone and nonexpansive mappings established by Minty, just mentioned above.

1.4. Inclusions of Monotone Mappings. Let T : H == H be a maximal

monotone mapping. A relevant fundamental problem is to find x € H such that
0€T(x). (1.1)

The monotone inclusions of this type include as special cases convex minimization,
complementarity problem, monotone variational inequalities.

The solution sets Z of such inclusions have a nice property. As proved by Minty
[1964], they must be (possibly empty) closed convex sets.

The next concepts are related to the solution sets Z.

Definition 1.4.1. Let T : H = H be a mazimal monotone mapping. T~ is
called Lipschitz continuous at the origin if 0 € T'(x) has the unique solution z and,

there exist € > 0, 7 > 0 such that

¥y €B(0,¢), Vo € T7H(y) o — 2| < 7llyll
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It is easy to check that, when T is strongly monotone with modulus y, this
relation holds automatically with ¢ := 400 and 7 := pu~ 1.

This concept above was first used by Rockafellar to analyze convergence rate and
finite convergence of the PPA. Still, it requires the solution-uniqueness of 0 € T'(x)
and, thus appears to be restrictive. Later, it was meaningfully generalized by Luque

[1984] to the following growth condition.

Definition 1.4.2. Let T : H = H be a maximal monotone mapping. we
simply call that T~ satisfies growth condition if there exist € > 0, T > 0 such that

vy €B(0,¢), Yz € T7'(y) |z —Z| <7yl

In contrast, this growth condition is a weaker one. It at least does not require
the solution-uniqueness of 0 € T'(z) and is known to hold when 7' is polyhedral;
see Ronbison [1981]. When specialized in variational inequalities, as shown by
Tseng [2000], it also may be inferred from results on error bounds for monotone
variational inequalities.

This chapter ends with a well known result [2, p. 27]; see also [34, 44]. This
result in general plays a key role in convergence analysis of some methods for

monotone inclusions.

Proposition 1.4.1. Let T : H = H be any maximal monotone mapping. If
{z*} is a sequence in H bounded in norm and converging weakly to some x, and
{wF} is a sequence in H converging strongly to some w and W* € T(z*) for all k,
then w € T(x).



Chapter 2

The Proximal Point Algorithm

2.1. Introduction. In this chapter, we discuss the proximal point algorithm for
solving (1.1):
" = (T4 ¢ T)" 1 (zF) VEk>o. (2.1)

This algorithm is first proposed by Martinet [27, 28], and then generalized by
Rockafellar [37]. Its dual version in the context of convex programming and their
variants have been extensively studied; see for example [5, 12, 14, 23, 24, 43] and
the references cited therein.
In [37], Rockafellar studied convergence behavior of the following approximate
version:
e = (T + 1) P+ vk >o, (2.2)

where ¢ > ¢ > 0 and & t!

is an error. Later, Luque [24] considerably improved
results on rate of convergence and finite convergence obtained by Rockafellar.
However, it appears to be impossible to evaluate the resolvant of 7' in many

cases. Therefore, we turn to consider its recently popular approximate version:
$k+1 + Cr T(ZL’k+1) 5 mk + €k+1 Vk 2 0’
which is equivalent to

oM = (I 4 ¢ T) " Ha® + Y vk >0, (2.3)

k+1is an error. Furthermore, for convenience, we henceforth

wherecp, > c>0ande
abbreviate the proximal point algorithm described by (2.3) as the PPA.

In this chapter, one major goal is to show that when the PPA is implemented
with the error criterion described by (2.17), superlinear convergence can be guar-

anteed under the growth condition. The result itself on this is not new. However,

6
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its error criterion is better than the one suggested by Luque and possibly best.
Especially, its proof techniques are new and powerful. Aside from this, we also

discuss other two error criteria:

o

Criterion 2.1.1. e < ex, Z&?z < 00;
k=0

Criterion 2.1.2. |ef Y| < & ||la*—2F L), 6 > 0.

Assumption. The solution of T'(z) 3 0, say Z, is assumed to be nonempty in

this chapter.

2.2. Convergence. This section mainly addresses the issue of weak convergence
of the PPA with Criterion 2.1.1. To this end, we need to make the following two

assumptions.

Assumption 2.2.1. There exist € > 0, 7 > 0 such that
VyeB(0,e), Ve e T 'y |z —Z| <7y (2.4)

Remark. This assumption is reasonably mild. For instance, for the case of
monotone variational inequalities, corresponding to T' = F' + N¢ and F' single-
valued, continuous and monotone on C, it follows from [44, p. 440] that this
assumption can be inferred from well known results on local error bounds for vari-
ational inequalities; see [11, 26, 33, 36]. For the case of convex minimization, cor-
responding to T := 0f, where f is closed proper convex, Assumption 2.2.1 can be
judged by Rockafellar [37, Proposition 6, Proposition 7]. Certainly, if f: R" — R

is, in addition, strongly convex with modulus a > 0, then we always have
lz =2l < a”Hlyll, VoeR", VyeT(z),

where z is the unique minimizer of f. That is to say, this assumption is globally
valid for the case of strong convexity of f, which, certainly, is entirely equivalent
to strong monotonicity of T := Jf. See [37, p. 891] for a detailed exposition.
All these suffice to show that Assumption 2.2.1 is not rather restrictive but mild.
More importantly, this assumption is weaker than the one [37] as it does not require
the solution set to be a singleton. It has been applied by Luque [24] to analyze

asymptotic convergence of the PPA.

Assumption 2.2.2. There exist C > 0, C' > 0 such that for all £ > 0,

lah — 2 < o, ¥ < ¢ (2.5)
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Remark. At first glance, it may appear rather strange that this assumption
involves *, which can not be determined before using the algorithm. Still, one may
knows a priori that it will hold, for example if domT is bounded; see [37, Remark 1].
Furthermore, when the PPA is implemented approximately with summable errors,
the resulting sequence satisfies this assumption; see [37, Thm. 1]. This fact will be

used in Corollary 2.3.1 below.

Remark. The common goal of both Assumption 2.2.1 and Assumption 2.2.2 is
nothing but to guarantee the validity of (2.10). Since, when T is strongly monotone,
it is valid globally, as showed in both Corollary 2.2.1 and Corollary 2.2.2 below,
the two assumptions are removed for analysis of the convergence and the rate of
convergence in this setting.

The result below is due to Eckstein [7, Lemma 2].

Lemma 2.2.1. Let {2*} be the sequence generated by (2.3). Then for any
z€Z and all k>0 :

244 = 2] < fla* - 2] = ok — SR L 2 ) (26)

Note that when all errors are zero the inequality above can be viewed as a

special case of [37, part (c) of Proposition 1, p. 881].

Lemma 2.2.2. Suppose that Assumptions 2.2.1-2.2.2 hold. Choose any start-
ing point x° € H. Let {x*} be the sequence generated by (2.3) with either Cri-
terion 2.1.1 or Criterion 2.1.2. Suppose that there exists an index K such that
ck>c>e Y (C+C) forall k> K. Then

2"+ =24 < (1 + 7 (|l — 2+ ), VE > K, (2.7)
b = argmin. 2% — 2|
Proof. Assumption 2.2.2 says that for all k£ >0

where z

2% — 2 <, [l < . (2.8)
Since, by hypothesis, ¢, > ¢ 1(C 4 C’) for all k > K, then it is easy to check that
lleg (@ — 2P N < et (b — 2 ) <6, VE> K. (29)

This relation, together with ¢ (2% — 2%*1 4 e*+1) € T(2%*!) and Assumption

2.2.1, implies that for all k& > K

‘xk—l—l _ Z‘ < T ”clzl(xk _ xk—l—l +ek+1)H

Tep (la® — 2+ [l ), (2.10)

IN
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where 2* satisfies 2F = argmin, ¢, |z% — 2||.
On the other hand, since T is maximal monotone, Z is nonempty closed convex
[30, 31], hence it follows from the definition of z* and the nonexpansive property

of the orthogonal projection [45, Eq. (1.8)] that we have
1224 — M| <l — 2R,
which, together with (2.10), implies that for all £ > K

z

ka—i—l _ P

kH < ka—i—l _Zk—i-lH + sz-ﬁ-l _ kH
_ |l‘k+1 _ Z| + sz—i-l _ zkH

-1 k k k k k
e (|2 — " M) + (|2t — 2t

< (1+ Tcgl)Ha:k — a:kHH + TclngekHH.

A

Since ¢, > ¢ for all £k > K, we have
2t = 2F) < (U4 7 (|2 — |+ M), VE> K. (2.11)

This completes the proof of Lemma 2.2.2. We now proceed with the main

convergence results.

Theorem 2.2.1. Suppose that Assumptions 2.2.1-2.2.2 hold. Choose any
starting point x° € H. Let {x*} be the sequence generated by the PPA with Crite-
rion 2.1.1. Suppose that there exists an index K such that cp > ¢ > 6_1(0 + )
for all k> K. Then {|z* — Z|} converges to zero.

Proof. 1t follows from (2.11) from that for all k > K and 0 < A < 1

<€k+1, :Ek-l-l _ zk>

e
< (e R (e — 2+ e )
1 1
< U= N2 = (= )T e R (1 e R

%( = Mla® =P (GO =N T+ T )2 (L e D)l

—_

[\

Putting this relation into (3.7) yields

ka-ﬁ-l _ Zk”2

IN

k Zk||2 o H k _ ﬂjk+1||2 ) <ek+1’ k+1 _ Zk>

2

l® = 2F 1% = All2® = 22 4 (1= )T+ e 2(1+ e ),

ZT ZT

IN
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which further implies
jf = Z)2 < |2 = Z)2 = Al|a® — 2P+ s e (2.12)

where k:= (1 =\ '(1+7c )2 +2(1 +7c¢71) .
In view of the inequality (a + b)? < 2(a® + b?) for a,b > 0, it follows from (2.10)
that

$k‘+l _ Z|2

IN

7_26;2 (prk o $k+1” + ||ek+1||)2

27’26];2 (ka o $k+1H2 + Hek—HH2)'

A

Combining this relation with (4.23) and eliminating the term ||z* — x**+1||? yield

1
(1+ 57_2)\cz)\mk+l — Z\z < \mk — Z\z + (A + /f)|]ek+1H2.

Since ¢, > ¢ for all £k > K, we have
|xk+1 — Z|2 <40 |xk — Z|2 + K ||ek+1\|2, (2.13)
where
1
0:=(1+ 57-%2)—1 <1,

and
/ L 2y 2y1
K o= ()\+/£)(1+§7' Ac?)

= A+00=N"0+re P +200+ 7)1+ %T_2)\C2)_1.

Summing up the two sides of (2.13) and rearranging the terms, for any given L > 1
we have

K+L

1=N Y foi - 2P
i=K

K+L
< ‘LL’K—Z‘2—9‘$K+L—Z‘2+H/ Z HezH2
i=K+1
K+L
< -2 Y e,
i=K+1

which, together with Criterion 2.1.1, implies that Y% |27 — Z|? is bounded for
any given L > 1, and thus we have {|2* — Z|} converges to zero. Furthermore, if
z is the unique solution of T'(z) 3 0, then {||z* — z||} converges to zero, i.e., the

iterate sequence {x*} converges strongly to the unique solution z. [
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For the case of strong monotonicity, we can get to the following stronger results.

Corollary 2.2.1. Choose any starting point 2° € H. Let {x*} be the sequence
generated by the PPA with Criterion 2.1.1. Suppose that T is strongly monotone
and lim inf,_ . cr > 0. Then {z*} converges strongly to the unique solution of
T(x) > 0.

Proof. Let T be strongly monotone with modulus > 0. Then, in view of [37,

Prop. 5], for the unique solution of T'(x) 3 0, say z, we have
lz =2l <Myl Ve, vy € T(2),

which, together with ¢ (2% — 21 4+ ef+1) € T(xF+1), implies

ka—l—l _

IN

N_1‘|C];1(xk _ xk—l—l + ek—l—l)H
-1 -1 k k k
phe (et =M+ et )

< ple(flaf = 2FH 4+ 1€F)),

d

IN

where ¢ := lim infy_,,cx > 0. Note that this relation can play the same role as
(2.10) in the proof of Theorem 2.2.1, so the proof of this corollary can be proceeded
in the same way as that of Theorem 2.2.1 as far as the corresponding remainder is

concerned. [

2.3. Rate of Convergence. This section mainly addresses the issue of superlinear

convergence of the PPA with Criterion 2.1.2.

Theorem 2.3.1 Suppose that Assumptions 2.2.1-2.2.2 hold. Choose any start-
ing point x° € H. Let {z*} be the sequence generated by the PPA with Criterion
2.1.2. Suppose that there exists an index K such that ¢, > ¢ > e 1(C 4 C") for all
k> K. Let § < (1 +7c )7t Then {|z* — Z|} converges to zero linearly. If in
addition cp T +00, then the convergence is superlinear.

Proof. By Lemma 2.2.1, we have

‘|$k+l _ zkH2 < ‘|$k _ zkH2 _ ‘|$k _ xk+1H2 + 2<ek+l’ xk—i—l _ Zk>.

Since Assumptions 2.2.1-2.2.2 hold, it follows from Lemma 2.2.2 that ¢, > ¢ >
e 1(C + ") for all k> K implies that

lz5 7t = 2F ) < (L e (fla® = M+ (), VE > K.
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Combining the two relations with Criterion 2.2 yields

H$k+1 _ zkH2

< ka . ZkH2 . ka _ l’kHHz 49 (ek+17 oL 2k>
<l = 2P |2t = F T 2l 2R

< 2k = 2R = 2 — 22 4261 + 0) (1 + T Y |jat — P2
= Jab =27 — ol — 2P,

where 7 :=1—26(146)(1+7c1). (Since, by hypothesis, § < (14 7¢ )7, then
v is a positive number.)

So, we further have
2P — Z)2 < |2k — Z)? — i || — 2P T2 (2.14)

This relation guarantees a sufficient descent of the distance of the iterate to the
solution set at each step.

On the other hand, from (2.10) and Criterion 2.1.2, we have
F T~ Z) < r(1+ 6)e ok — 2F .
Combining this relation with (2.14) and eliminating the term ||z* — 2%*+1|| yield
7214 6)22 5 a* — Z2 < ok — Z2 — 2P — 22,

We further have
a7 <02k - 2|, VE>K,

where
9 = (1 + ]/62)_%, (215)
vi=7 (14 6) 0 =721 +06) (1 - 26(1 4 8)(1 + 7¢ ™)) (2.16)
with
§< %(1 + e 7L

Obviously, if ¢ T +oo then the distance sequence converges {|z*—Z|} superlinearly
to zero. If, in addition, the solution of T'(x) 3 0 is unique then the sequence {z*}
converges strongly to this solution linearly. [

As a direct consequence, we have
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Corollary 2.3.1. Choose any starting point 2° € H. Let {x*} be the sequence
generated by the PPA with the error criterion

le¥]] < minfey, & [la*+ — 2|}, (2.17)

and § < %(1 +7c )7L Suppose that Assumption 2.2.1 holds and there exists an
index K such that ¢, > ¢ > e {(C+C") for all k> K. Then {|z* — Z|} converges
to zero at a linear rate bounded from above by 0 described by (2.15). If in addition
¢, T 400, then the convergence is superlinear.

Proof. Since the error criterion (2.17) implies that all errors are summable,
which implies [37, Thm. 1] that the iterate sequence is bounded, then, the condi-
tions of Theorem 2.3.1 subsume that of this corollary, and thus the conclusions in

that theorem are in force. [

Remark. When the exact version (2.1) (i.e. § = 0) is implemented, this bound
for linear rate, which is 6 := (1 + 7'_262)_%, can be achieved; see [24, p. 282-283].
Furthermore, Assumption 2.2.1 is not necessary; see [20, 24].

Below we discuss an auxiliary error criterion:
||ek+1|| < min{€k7 Nk ‘|$k+l - ka}7 Zek < 400, g =0, Vk >0,

where {n} is any given nonnegative sequence such that n, — 0. Obviously, it
removes the traditional assumption that > m, < +oo and, can also guarantee
superlinear convergence of the PPA. In fact, by hypothesis, since 7, — 0, then there
exists K such that for all k > K we have n;, < 7. Therefore, when k > K' + K,
the conclusion of Corollary 2.3.1 is in force.

For the case of strong monotonicity, we can get to the following stronger results

on convergence rate of the PPA with Criterion 2.1.2.

Corollary 2.3.2. Choose any starting point 2° € H. Let {x*} be the sequence
generated by the PPA with Criterion 2.1.2. Suppose that T is strongly monotone
and lim inf,_cr > 0. Then {x*} converges strongly to the unique solution of
T(z) > 0 linearly. If in addition c T +00, then the convergence is superlinear.

Note that for this two corollary, Assumptions 2.2.1-2.2.2 are removed since the
Lipschitz property of T~ is globally valid.

Very interestingly, for such a special case of strong monotonicity, when we follow
the line of argument pioneered by Rockafellar (see [37, p. 879-880]), we can obtain
a stronger result than Corollary 2.3.2.

Let us begin with a technical lemma.
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Lemma 2.3.1. Suppose that T is strongly monotone with modulus > 0. Let
{x*} be the sequence generated by the PPA. Then for all k> 0

125t — 2] < (L e~ (l® — 2]+ [P, (2.18)

where z is the unique solution of T(x) 2 0.
Proof. Denote T" :=T — ul. By (2.3), we have

" = (I + ¢ T) a4 F )
= (14 cpp)I + T a® + P
= (14 cep) Y+ (14 cpp) tep TNk 4 .

Since T is strongly monotone with modulus g > 0, then, in view of [37, p. 879],
T' := T — ul is monotone and Jg, 77 := (I + (1 + cgu) texT') ™! is nonexpansive
for By, := (14 cpu)"tep > 0.

On the other hand, since z is the solution of T'(z) > 0, then it is easy to see that

= (Ut )™ g1 (2).

So, in view of the nonexpansive property of this resolvant Jg, 7/, we have

5t — 2|

= (14 cpp) g, o (@ + ) = T o ()|
< (14 ) Hja® — 2 + L
( )

< (L ep) (12" = 2]+ ).

This completes the proof of Lemma 2.3.1. [

Theorem 2.3.2. Suppose that T is strongly monotone with modulus p > 0.
Let {2*} be the sequence generated by the PPA with |1 < & ||a*+! — 2%,
0< ¢ < 1. Then for allk >0

2"t — 2] < (14 epa) (L 428" (1 = &)Y l2* — 2,

where z is the unique solution of T(x) > 0.
Furthermore, if there exists an index K such that ¢, > ¢ > 2u=16'(1—6")~! for all
k > K then

124 — 2| < '[|2" — 2],
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where ' = (1 +cpu) (1 +28(1—46)"1) < 1.

In particular, if ¢, T oo, then

Proof. Since {z*} is the sequence generated by the PPA, we have
$k+l — (I + CkT)_1($k + ek-i—l)‘

Thus it follows from the nonexpansive property of (I 4+ ¢T')~! and this criterion

that

) (xk + ek-i—l) . ka
I+, T)7 @k + ) — (T + . T) @) + | (I + aT) "L () — ¥
)7 @®) = 2|+ et
)~ (

INIA
+
=
S

IN
~
_l_
e
ol
~
|
—_
8
ol
~—
|
S
T
+
i
Bl
ol
+
[
|
8
=

(2.19)

So, we have
2"+ — 2| < (1= &) + e T) 7 (b) - 2¥).

This fact shows that
"] < & [l — 2] < 8'(1 = &) M + D) (") — 2,
which, together with

(T + e T) " (") — ¥ (2 + &)~ (@®) = (T + )7 H(z) — (@ = 2)]|

(I + &)~ (@") = (T + e T) " @) + [l — 2]

2ka - ZH?

I

IN

implies that
¥ < 28" (1 = &)k - z].

Combining this relation with Lemma 2.3.1, we have
2"+ = 2| < (1L + epp)THL+ 28" (1= &) 7) [|l2* — 2]

Thus, it is not very difficult to check that the conclusions of this theorem is valid.

This completes the proof of this theorem. [
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Theorem 2.3.2 shows that for the case of strong monotonicity, if ¢, is sufficiently
large the iterate sequence converges to the unique solution of T'(x) 3 0, not only
strongly, but also at least as fast as the linear rate. Furthermore, if ¢, T oo, the
convergence is superlinear.

This section ends with a partial converse to Corollary 2.3.1. Moreover, a partial
converse to Theorem 2.3.1 can be easily obtained in a similar way, and thus is

omitted.

Theorem 2.3.3. Choose any starting point 2° € H. Let {:Ek} be the sequence
generated by the PPA with (2.17) with 6 < 1. Suppose that cj T coo < +00, and
suppose that there exist T > 0, € > 0 such that

Vy € B(0,¢), Ve e Ty |z —Z| > 1]y (2.20)

If {z*} does not converge to Z in a finite steps. Then

’xk-i-l _ Z] B

Proof. Choose some fixed 7 > 0. A discussion similar to the proof of Corollary
2.3.1 yields that {* —z¥T1} and {e**1} are bounded. Thus, ¢ T ¢ < 400 shows
that there exists some K such that

e t(ah — 2P 4 bt <, VE> K.
In view of (2.20) and c; ! (zF — 2¥*+! + eFF1) € T(2F+1), we have
e = Z] > 1t (@ — 2R 4 ek )
which, together with |e*+1|| < §|lz% — 2%*+1||, § < 1, implies that
|2F T — Z) > et (1 - 0) ||k — 2P (2.21)
On the other hand, it is easy to check that
2% — 25| > |2F — 2] — |25 — 2.
Combining this relation with (2.21) and eliminating the term ||z* — 2*+1|| yield
et 11 = 8) a2kt — Z| > |2k — Z| — |2F T - 2Z).

So, we further have

|$k+1 _ Z|
|2k — Z|

lim inf,_, . > limy o

1+ H1—-6)"1 1 + oo (1= 6)"1
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Since 7 can be arbitrarily large, the theorem follows. [
This theorem says that if such hypothesis hold then {|z* — Z|} can not converges

to zero faster than sublinearly; see [24, Theorem 4.1] for a related result.

2.4. Applications. This section mainly exemplifies applications of the PPA.

Example 2./.1. When specialized in the case of convex minimization where T :=
df, subdifferential of some closed proper convex function f, the PPA corresponds
to

0 € MOf (2P ) 4 ab+t — gk

which is equivalent to
. 1
1 = argmin{Ar f(2) + 5 o — 2*(*}

The method described above is the very method proposed by Martinet for convex

minimization.

Ezample 2.4.2. When specialized in the case of monotone variational inequali-

ties where T' := N¢ + F', the PPA corresponds to
0 € \e(No (2Pt + F(af ) 4 2Pt — 2k,
which is equivalent to
¥ — M F (2" € (I + M Ne)ah Tt o 2P = (I + X\ Ne) 7 HzP — N F (2R ).

So, we have

xk-l—l — PC[.Z'k . )\kF(xk-l-l)]

Ezample 2.4.3. We consider the case of evolution equations:

du(t)
ot

where T : H = 'H is maximal monotone.

0¢e

+ Tu(t) u(0) = 22,

Discretizing this partial differential equation yields

k+1 ok
X — X
neg —— + Txkt1
Ak

and thus we obtain

0 (I+MD*t -2 o M= T+ N1

That is, we can use the PPA to solve the evolution equations above.



Chapter 3

Classical Splitting Methods

3.1. Introduction. In the last chapter, we discussed the PPA for maximal mono-
tone mappings, and showed under standard conditions its superlinear convergence.
However, such theoretically nice convergence properties do not guarantee that the
PPA is practically implementable method. This is because that in many cases
the resolvants involved in the PPA are not very easy to evaluate. As such, when
the PPA is implemented, the number of iterations is small, but, in general, the
computational cost per iteration is too much expansive !

One alternative is to resort to so-called splitting methods for monotone map-

pings. Precisely, for the following inclusions
0€eT(x),
we do not directly use the PPA while we consider the possible equivalent inclusions
0 € B(z) + F(x), (3.1)

where T' := B + F with B, F maximal monotone, and Jyp and/or Jyp are/is
relatively easier to evaluate than Jy7. We can then devise a method that uses only
Jyp and/or Jyp, instead of Jyy. All methods of such procedure are called splitting
methods.

3.2. Forward-Backward Splitting — Error Bounds. We first discuss the
simplest splitting method — forward-backward splitting method, which may be of

the following form:
e T+ AB)YI = AF)z* vk >o.

18
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When F' is not single-valued, the forward-backward splitting method described
above may fail to converge; see [7]. Therefore, we merely consider the case where
F is single-valued. Of course, in this case, the forward-backward splitting method

for solving (3.1) is of the form:
2 = (I + X\B)"YI — \F)2F Yk >0, (3.2)

where A, > A > 0.

The following convergence theorem is due to Chen and Rockafellar [3].

Proposition 3.2.1. Suppose that F : H = 'H is Lipschitz continuous, mono-
tone and T'= B+ F : H = 'H is strongly monotone. Then any sequence generated
by (3.2) strongly converges to the unique solution at a linear rate.

Now our goal is to study the convergence behavior of the resulting iterates when
(3.2) is implemented approximately. To this end, we first introduce the concept of

error bounds on forward-backward splitting.

Theorem 3.2.1. Consider any mazimal monotone mappings B, F : H = 'H
such that F is Lipschitz continuous. Let T := B+F. Then the following statements
are equivalent.

(a) There exist € >0, 7/ > 0 such that

Yy eB(0,€), Ve e Ty |z—2Z| <7 |y (3.3)
(b) There exist € > 0, 7 > 0 such that

Ve e Zy(e) |z —Z| <7|x— Jx(x)] (3.4)

where Zy () = {z |||z — Ja(z)|| < €} with Jy := (I + AB)"}(I — \F).
Proof. (b) = (a). In fact, for any given € > 0, it follows from [2, 44] that

vy eB(0,¢), Ve T (y)  llz— @) < Ayl (3.5)
Thus, if in addition € < A~'e then
lz = Ia@)Il < Allyll < X' <e
This shows that for all y € B (0,¢') and for all z € T~ 1(y),
d<\le = xecZye).
On the other hand, it follows from (b) that

x€Zye) = |r—Z|<71|x—Jx(x)|
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Therefore, combining the results above yields
[z —Z| < 7]z — @) <7yl <7yl
where we let 7/ > 7.
(a) = (b). Since Jy(x) := (I + AB)~YI — A\F)(x),
Ixn(x) + AB(Jx\(z)) > © — AF(z).
That is,
x — Jx(x) — AF(x) € AB(Jx\(2)).
Summing up AF(Jy(x)) and then multiplying by A~! both sides of the relation
above yield
Ao — J\(2) — F(2) + F(J\(z)) € T(Jr()). (3.6)
Let y := A~ (z — Jy(z)) — F(x) + F(Jx(z)). The Lipschitz continuity of F' implies
that for all x € Zy(€) with € < (A7 +1)71¢ the following relations hold

Iyl < AP+ D)z — Ja(@)]| < AP+ De <€

This shows that if e < (A™! +1)7!¢ then y € B(0,¢'). In the meanwhile, (4.8)
implies that Jy(z) € T~ !(y). The two facts, together with (b), imply that if
e < (A1 +1)7 !¢ then

(@)= 2] < Tyl
< 7z = Ja(x) = F(z) + F(Ja(2))]
< AT D = Ja@)]- (3.7)

On the other hand, since Z is a nonempty closed convex set [30] and the or-

thogonal projection Py is nonexpansive [45, Eq. (1.8)], then

[ = Pz(2)]
< lz = @)+ [1a(2) = Pz(Ix (@)l + | Pz(Jx(2)) = Pz(z)]]
< 2z = Ja(@) |+ [Ia(2) — Pz(Ix(@))]]

Consequently, we have
[z —Z| < 2|z — Ja(2)|| + [Jr(z) — Z]. (3.8)
Combining (3.8) and (3.7) yields that for all z € Z)(e) with e < (A~ + 1)~ ¢

|t — Z| < (PN + 714 2) ||z — I (@)|] < 7w — Ja(a)]], (3.9)
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where we let 7 > (7/A71 + 71 + 2).
Note that the statement (a) is known to hold when 7' is polyhedral [36]. Fur-
thermore, the relation (b) = (a) has been reported by Tseng in the context of

variational inequalities; see [44, p. 440] for more details.
Corollary 3.2.1. If in addition T is strongly monotone with moludus p > 0.
Then the following statements are equivalent.

(a) Ve, ¥yeT(z) llz— 2| <pnyl;

®) =2 < (WA pT i Dl = @),

where z is the unique solution to 0 € T'(z).
Proof. For any given z, since 0 € T'(z) and T is p-strongly monotone then for
all y € T'(x) we have
(@ =2,y —0) 2 plla -yl

And it is easily seen from the relation above that
va, Vy e T(z) |z —z| < p Yyl
A discussion similar to Theorem 3.2.1 yields
lz =2l < (WA T+ Dl = Ja(@)])-

Note that the condition number is relaxed to p='A + p =11 + 1 rather than g~ '\ +
w42 (cf. (3.9)) in that the solution set is a singleton.

As a consequence, it is immediate that

Corollary 3.2.2. If in addition B = N¢, where C is a nonempty closed convex

subset in the Fuclidean space. Then
o =z < ("IN pT i+ Dle - Pelz — Fa)]].

Note that this global error bound is similar to global error bound for strongly
monotone variational inequalities [33]; an entirely equivalent result easily follows
from (4.7). In addition, for the case (b) of Theorem 3.2.1 in the context of varia-

tional inequalities, the reader can see [26, 36] for a related discussion.

3.3. Forward-Backward Splitting — Two Error Criteria. In this section,
we propose an approximate version of the forward-backward splitting method de-

scribed by (3.2) with two error criteria. Under standard assumptions, we prove



CHAPTER 3. CLASSICAL SPLITTING METHODS 22

global convergence of this approximate version with one criterion (see Criterion
3.3.1), and apply error bounds for forward-backward splitting to establish linear
convergence with the other one (see Criterion 3.3.2).

Consider the following approximate forward-backward splitting method
2" = (T + \eB) YT = A\ F)ak + 51 vk > 0. (3.10)

Two error criteria are treated in this paper

o

Criterion  3.3.1. || < e, ZE% < o0
k=0

Criterion 3.3.2. || < ||lzF—2* |, n > 0.

Assumption 3.8.1. Assume that B, F' : H = H are maximal monotone map-

pings such that F' is [-Lipschitz continuous and p-strongly monotone.
To simplify the proofs of Theorem 3.3.1 and Theorem 3.3.2, we first introduce

some technical results.

Lemma 3.3.1. Suppose that Assumption 3.3.1 holds. Let {x*} be the sequence
generated by (3.10) and z be the unique solution of (3.1). Then
(a) there exists 3 > 0 independent of \ < 2u/l? such that

16"l < B (2™ = 2|l + [[e*+H),

where ¢F := z¥ — 2 + 2(2F 1 — 2F) 4 AF(2F) — A\F(2) — eFFL.
(b) Furthermore,

<$k+l _ k+1 _ l‘k>

Z,T

< N = aF et = 2] = Aplla® = 2?4 Bllat T — 2l + Bl
Proof. Let us first prove the first part of this lemma. It follows from (3.10) that
l‘k+1 — J)\($k) _‘_ek—i-l‘

Consequently,
2% = Ta@®)|| < Jl2*+ = 2|+ [l (3.11)
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On the other hand, since Assumption 3.3.1 holds, then it easily follows from
Corollary 3.2.1 and (3.11) that

e
= |z — 2 + 2(2F — 2F) + AF(2F) — AF(2) — eFH

< 202 =R+ (L D)2 - 2+ ()
< 20—+ AT DTN T+ D = I A+ e
< 22t — 2R+ AT+ D (TN g )R = 2R

N+ D) (A 1) 4+ D).
Then there exists 3 > 0 independent of A\ < 2u/I? such that
IG*[ < B ([l = 2®|| + [l (3.12)

Note that it is entirely reasonable to a priori require that A\ < 2u/I? in that this
constant corresponds to the upper bound of stepsize for the exact case.
Now we are in a position to prove the second part of this lemma.

By (3.10), one has
(I +AB) (2"t = h) 5 (I = AF)(a"),
which implies
AL (aP = P R R(gk) € B(ahtt — eh ), (3.13)
On the other hand, 0 € B(z) + F(z) yields
—F(z) € B(2). (3.14)
Since B is (maximal) monotone, then it follows from (3.13) and (3.14) that
(xFHh — ekt AT @k — 2P P — PR 4+ F(2)) > 0. (3.15)

Rearranging the terms of this relation above yields

(L o gL gk
< =AM =2 F(af) = F(2) + (", 0F)
< A =2 F(f) = F(2)) = Ma® — 2, F(a%) — F(2)) + (", ¢")
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where ¢ is defined in (a) of this lemma.

24

Since F' is [-Lipschitz continuous and p-strongly monotone, then this relation above,

together with (3.12), implies that

(xk-i-l _ z,xkﬂ _ xk>

k k k k k k
< A =2 lz® = 2] = Aulla® = 2] + [0

< AU = aFflla® = 2] = At = 212+ Bl — 2t 4 Bllet .

The proof of this lemma is complete. [J

Theorem 3.3.1. Suppose that Assumption 3.3.1 holds. Choose any starting
point 20 € H. Let {x*} be the sequence generated by (3.10) with Criterion 3.3.1.
Suppose that A < 2(1 — 0)u/1? , where 6 € (0,1). Then {z*} converges strongly to

the unique solution to (3.1), say z.

Proof. According to the equality ||u + v||? = ||ul|* — ||v]|* + 2(v,u + v) for all

u,v € ‘H, one has

”xk-l—l - ZH2 — ka N ZH2 - ka-l—l - ka2 + 2<xk+1 - Z,xk+1 - xk>

On the other hand, it follows from (b) of Lemma 3.3.1 that

2<$k+1 _ Z,l‘k+1 _ $k>

< 2N 2P = 2P la® — 2| = 2Aulla® — 2| + 2l ]|¢" |

< (A=)l =M+ (1= 0)TINE b — 2P — 22u]a* ~
+20)| Pl — 2F) + 2B

< (=9 =P+ (1 - 0) A |2* — 2| — 222" —
_|_9||$k+1 _ $k||2 + 9_1ﬁ2||6k+1||2 + 2ﬁ||€k+l||2

S e A B () o e OV |

(0715 +20) [,

which, together with (3.16), implies

25 — 2 < Mla® — 2)* + (67167 + 28) [l

where

k= (1—60)"IN22 — 22 + 1.

(3.16)

(3.17)

(3.18)

Summing up, rearranging both sides of (3.17) and considering the nonnegative-

k+1 _ Z||2

ness of ||z yield

k
(L=r) Yl =2l < o — 2| + Z 607157 + 26) [l 2.
=0

(3.19)
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Since A < 2(1 — 0)u/12, it follows from (3.18) that x < 1. Moreover, in view
of Criterion 3.1, we further have that Zf:o lei*Y|? < 4o00. These show that
Z?:o |lz? — 2||? < 400 implying that {z*} converges strongly to z.

The proof of this theorem is complete. [

Theorem 3.3.2. Suppose that Assumption 3.3.1 holds. Suppose that the step-
size A < 2(1 — 0)u/1? , where § € (0,1) is any given sufficiently small positive
number. Choose any starting point z° € H. Let {x*} be the sequence generated
by (3.10) with Criterion 3.3.2, where n := (/1423710 — 1)/2, and z be the
unique solution. Then {x*} is strongly convergent at a linear rate no larger than
V14 (1—0)"1A212 — 2)p.

Proof. Criterion 3.3.2 says

k+1 k+1 k
[T < mlla™ T — 2. (3.20)
On the other hand, according to the proof of Theorem 3.3.1, the following
relations hold
ka—i—l _ ZH2
<l — 2P = 2t = 2P 4 20 12— 2F|lfla - 2|
k k k k k
—2cpl|z® — 2||* + 28| | (| — 2F (| + [lFFH)).
Consequently, it follows from the relation above and (3.20) that
ka—i—l _ ZH2
<l = 2P 2 = 2P 4 (1= )|l — 2P
+(1 = )TN 2" = 2|* = 22|z = 2)* + 280(1 + ) [T — 2",
Since n := (/1426719 — 1)/2, then it is easy to check that 26n(1 + n) = 6.
Therefore, this relation above implies that

”xk—l—l . ZH2

IN

(1+ (1= 0)""N1 = 22|z — 2[* = (0 — 26n(1 + n))||«"F — 2¥||?
= (141 =022 —2)\p)|jzF — 2|2

This shows that the iterate sequence {z*} is strongly convergent at linear conver-

gence rate no larger than /1 + (1 — 6)~1A212 — 2\p.

Note that some key techniques in the proofs of Lemma 3.3.1, Theorems 3.3.1—
3.3.2 can be founded in [26, 22, 13].
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3.4. Peaceman- and Douglas-Rachford Splitting. We now review the Peaceman-
and Douglas-Rachford family of splitting methods for solving the monotone in-
clusions (3.1); each involves in resolvants of both the forward mapping and the

backward mapping.

The corresponding Peaceman-Rachford splitting method is:
M= QU+ AB) 1)U+ AF) P =1)z* Vk>o0.
The corresponding Douglas-Rachford splitting method is:
2" = (I + AF)7Y(I + AB)"Y(I — AF) + A\F]z* Vk>o0.

Furthermore, they can be implemented efficiently in the following ways.

Let 20 be any starting point. For any given k > 0, find the unique y* such that
y* + AB(y¥) 3 o — A\F ().
Then find 2*+1 such that
P AF (2P = (1 — )b + 4% + AF ().

The v = 1 case corresponds to the Douglas-Rachford splitting, whereas the
~ = 2 case corresponds to the Peaceman-Rachford splitting [23]. Furthermore, the

v € (0,2) cases have already been well studied in [7, 8].



Chapter 4

New Splitting Methods

In this chapter and the next chapter, we are mainly concerned with (1.1) with such
splitting of T := B + F where B is also maximal monotone and F' is continuous
monotone. Then, we fully exploit this kind of special structure and develop a class

of new and effective splitting methods for solving (3.1).

4.1. Basic Inequalities. Now we aim to develop new splitting methods for solving

(3.1) in the context above. To this end, we first give some basic inequalities.

Lemma 4.1.1. Let B, F : H = H be two maximal monotone mappings. If F

is single-valued, then for any zero of (2.15), say z, we have
(. — Jy(2), 2 + A\F(z) — 2 — AF(2)) > ||z — Jr(2)|]%. (4.1)

If in addition F(x) := Mz + q, where M is a linear mapping from H to H and
q € H, then

(w—z, ([+MT)(z—(I+B) (e =Mz—q))) > |e—(I+B) " (z—Mz—q)|>. (4.2)
Proof. Since Jy(z) := (I + AB)™'(I — AF)(z), we have
Ixn(x) + AB(Jx\(z)) > © — AF(z).

That is,
MYz — J\(2)) — F(z) € B(J\()). (4.3)

On the other hand, since z is a zero of T := B + F then we have
—F(z) € B(2) (4.4)

27
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It follows from (4.3), (4.4) and monotonicity of B that
ANz = Ja(@)) = (F(x) = F(2)), Ja(x) — 2) > 0.

i.e.,

A e = (@) = (F(z) = F(2)), @ — 2 — (z = Jx(2))) 2 0. (4.5)

Rearranging the terms of (4.5) yields
(x—I\(x), 2+ AF(z) — 2 = AF(2)) > ||z — Jr(2)||> + MF(z) — F(2), © —2). (4.6)
Consequently, it follows from (4.7) and monotonicity of F' that
(x — J\(x), T4+ AF(z) — 2 — AF(2)) > ||z — Jx(2)||%. (4.7)

Furthermore, the relation (4.2) similarly follows. O

Lemma 4.1.2. Let B, F : H = H be two maximal monotone mappings. If F

is single-valued, then for any zero of (2.15), say z, we have

(x —z, x — Jx(z) — AF(x) + AF(J\(x)))
> o — Ja(@)]* = Mz — Ja(z), F(z) — F(Jx(2))). (4.8)

Proof. By (4.5), we have
Az = (@) = (F(x) = F(2)), 2 — 2 = (z = Ja(2))) >0,
which, together with monotonicity of F, i.e.,
(F(Ir(2) = F(2), 2 — 2 — (2 — Ja(2)) = 0,
implies that
Az = (@) = F(z) + F(JA(2))), =2 = (z = Jr(2))) 2 0.
Rearranging the terms of this relation yields

(x — z,x — Jx(z) — AF(x) + AF(Jx(2)))
>l — Ja(@)]* = Mz — Ja(z), F(z) — F(Ja(x))).

4.2. New Splitting Methods. We now make use of the above-mentioned in-

equalities to develop some new splitting methods for solving (3.1).
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Algorithm 4.2.1. Let F(x) = Mz + q. Choose any starting point 2° € H.

k

For any given k > 0, computing zFt from x* according to

M =gk (T + MT)r(a®) VE>0. (4.9)
where
r(z)=z— I+ B) Yz — Mz —q),
e = I+ M )r(a®) |72l ()], (4.10)

That deserving much attention is that dom B is convex but not necessarily closed
[38, Chapter 12] and all the resulting iterates do not necessarily lie in domB, but
the solution set Z is a nonempty closed convex set contained in domB. So, as
proven below, the corresponding iterates must weakly converge to some element of
Z in an asymptotic way.

The convergence proof of Algorithm 4.2.1 is similar to that of [40, Theorem 2.1]
except using (4.2) instead of the two inequalities in line -7 and line -9 in [40, p.
1817]; see [17] for an earlier discussion on convergence. Furthermore, the proof of
convergence rate is similar to that of [40, Theorem 2.1], but using (4.11) instead
of [40, Eq. (1.3)]. It is also similar in spirit to those in [42, 25, 26]. However, we

include its proof here for completeness.

Theorem 4.2.1. Any sequence {x*} generated by Algorithm 4.2.1 is weakly
convergent. Let Z(e) = {x |r(z) < €}. If there exist € > 0, 7 > 0 such that

|l — Z| < 7||r(x)||, Yz e Z(e). (4.11)

Then the convergence is R-linear.

Proof. Let z € Z. For any given k > 0, we have from (4.19) that
[P

= l2* =z — (I + MT)r(z")|?

= ¥ = 2l* = 29fa® — 2, (1 + MT)r(a®) + AR+ MT)r(a")||? (4.12)
On the other hand, in view of (4.2) in Lemma 4.1.1, we have

(@ =2, (L+MT)r(ah) = |r(z"))%.

Using this to bound the next-to-last term in (4.12) yields the following relation

2"+ =2l < fl2® = 2] = 29l (@)]P A7 NI+ M )r ()]

l® = 2% = 17 + My ()72 () | (4.13)

l® = 2l = (17 + D)2l ("), (4.14)

N
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where the equality follows from (4.10). The remaining argument is patterned after
the proof of [37, Thm. 1] and of [42, Thm. 1] and of [40, Thm. 2.1].

The relation (4.14) above shows that {||z* — z||} is also bounded above. Thus,
{2*} must be bounded and at least has one weak cluster point, say z°. Let {z*0)}
be some subsequence converging weakly to x°°. Let J(z) = (I +B) (x — Mx —q).
It is easy to check that r(z¥) = ¥ — J(2F) — 0 strongly, thus {J(2*))} converges
weakly to 2 as well. Furthermore, it can be seen that J(z*0)) € domB is bounded
in norm for all k(7).

On the other hand, since J(z*) = (I + B)™(z* — M2a* — q), we have

z* — J(a®) — Ma* — g e B(J(=")).
Furthermore, it is immediate that when k(j) — 400 we have
2F0) — J(xk(j)) — Mz*9) — g — —Mz™ — ¢ strongly. (4.15)
So, in view of Proposition 1.4.1 with T'= B, we have
—Mz>* — q € B(z™).

This implies that 2°° is a zero of (3.1).

The uniqueness argument of weak cluster point easily follows from the one of
Martinet [27]; see also [37, 5]. Thus is omitted.

The next goal is to show its local linear convergence. Since (4.13) holds for all

k and all z € Z, we obtain for all k&

H:Ek+1 _ Z||2
<l = 2P = 1+ M) )1
= la® =2 = 17 + M) (") 72 [lr ()|
<t = 2P = nllr @),

where we let n = ||(I + M7T)||=2. So, we have
@t = Z2 < Jab = 21 = |(L + MT)r(ah)|| 72 (")), (4.16)
and
= Z] < [a? = 27 — | (). (4.17)

On the other hand, since ||r(z¥)|| — 0, we have ||r(z¥)| < € for all k greater
than some k, in which case (4.11) yields |z¥ — Z| < 7[jr(2*)|. Combing this and
(4.17) yields

12— Z2 < |oF — Z)2 - %wf — Z)? (4.18)
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for all k > k, so {|z*F — Z|} converges to zero in the quotient sense and, by (4.17),
{r(x*)} converges to R-linearly to zero. Since by (4.9), (4.10) and (4.16) we have

2% — &M = (L + M) @) @)P < (b - 2P - Mz

for all k, it follows from {|z* — Z|} — 0 in the quotient sense that {||z* — z**+1||}
converges R-linearly to zero and hence {z*} converges R-linearly. [

Algorithm 4.2.1 can be further extended by replacing the term (I + B)™!(z —
Mz — q) in the definition of r(x) with a more general matrix-splitting term. In

particular, consider the following algorithm.

Algorithm 4.2.2. Choose any starting point 20 € H and any positive definite

k

matriz M'. For any given k > 0, computing x**1 from z* according to

af =gk — (M + MT) (2R — b)Yk >0, (4.19)
where uF is the unique solution of the nonlinear equations
ub = (I +B)"Y(u* — Ma* — g+ M' (2% — b))
and
i = |[(M' 4+ MT) (2P —ub)||72(z* — ok, M (2% —uF)). (4.20)

Note that if we choose M’ = I, then Algorithm 4.2.2 reduces to Algorithm
4.2.1. We have the following result whose proof is similar to that of Theorem 4.2.1

and thus is omitted.

Theorem 4.2.2. Any sequence {x*} generated by Algorithm 4.2.2 is conver-
gent. If in addition (4.11) holds. Then the convergence is R-linear.

Remark. Impressively, we are unable to propose a generalized version of [15,
Algorithm PC]J or [40, Algorithm 2.3]. This mainly results from the absence of an

appropriate generalized form of the inequality:
(x — Po(r — Mz —q), Mz + q) > ||z — Po(z — Mz — g)|*

while [15, Algorithm PC] or [40, Algorithm 2.3] for affine complementarity problems
or variational inequalities depends heavily on this inequality in a way that does not

seem to carry over to the case of (3.1).

Algorithm 4.2.3. Choose any starting point x° € H and X € (0, 1/1), where

s a constant satisfying

(' —x, F(2') = F(z)) <l|2' —z||* V2, Va.
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k

For any given k > 0, computing zFt from x* according to

af =2k (2b — I\ (2F) = AF(2P) + NF(J\(2F)) Yk >0, (4.21)
where
v = (1— Al)”mk — JA(mk) — )\F(mk) + )\F(J,\(xk)H_2Ha:k — J,\(xk)H2. (4.22)

The proof below is similar to that of [40, Theorem 3.1] except using (4.8)
instead of the inequalities in lines 3-12 in [40, p. 1822] for convergence (see also

[18]), whereas using (4.23) instead of [40, Eq. (1.3)] for rate of convergence.

Theorem 4.2.3. Let F(x) is monotone and Lipschitiz continuous. Then any
sequence {x*} generated by Algorithm 4.2.8 is convergent. If in addition there exist

7> 0, € >0 such that
|z — Z| < 7|l — Jxn(x)]|, Vze Z(e). (4.23)

Then for the choice of X =1 (it can be met by trivially scaling Lipschitz constant
of F'), the convergence is R-linear.
Proof. Let z € Z. For any given k > 0, we have from (4.21) that
”xk—i-l _ ZH2
= [la* — z — (a® — I (2") = AF (") + AP (D)2
= la* = 2| = 29 (2" — z, 2% — Ia(&¥) = AF(2") + AF(Jr(2")))
|2 = Ia(@®) = AF (") + AF(Ja(2")[. (4.24)

On the other hand, it follows from (4.8) that

(xF — 2,28 — T\ (2F) — In(@F)F(2®) + AF(Jy(2F)))
> |la* — Ja(@)|? = Ma® — Ja (@), F(a") = F(Ia ("))

Using this to bound the next-to-last term in (4.24) yields

2"+ =2 < fl2® = 2] = 29 (1 = Al = Ta()P +
Tk llz® = I (2¥) = AF (&%) + AF (Jy ()|
= fa® =2l = (1 = AD?|la” — I (2¥) = AF () +
AF (@) 72 [l = Ta(=")]1, (4.25)

where the equality follows from (4.22).
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The remainder of the proof is similar to that of Theorem 4.2.1, but using (4.23)
instead of (4.11). In fact, since we assume, in addition, that A\ = 1, in view of
(4.21) and (4.26), we have

= aH 2 = (1= Dt Tt = ) + P 2 - T2
> (1= +1) 2k - I

for all k, where I’ denotes Lipschitz constant of F. Thus, the rightmost term in

(4.25) is bounded above by a positive constant times —||z¥ — J(z*)||? and, when
this term converges R-linearly to zero as k — oo, so does ||z¥+1 — 2%||2; hence {z*}

converges R-linearly.

Algorithm 4.2.4. Choose any starting point x° € H and A_; € (0, +00). Also
choose p € (0,1) and 3 € (0,1). For any given k > 0, computing (x*+1, \,) from
(2%, MNe_1) where Ny is the largest X € {\p_1, A\o—10, \e—152, ...} satisfying

Aok — Ja(a), F(ab) — F( ) < (1- p)a* — Ja@b)]P.
and let
P = 2k (b, () - MF () £ AE (, (24) V>0,
where
i = plla* — Tn (@) = AeF(*) + MF (T (@) 2% = T, @)% (4.26)

Below we present the convergence results of Algorithm 4.2.4. The proof is
patterned after that of Algorithm 4.2.3 and thus is omitted; see [40, 41] for its

special versions in the context of monotone variational inequalities.

Theorem 4.2.4. Let F(x) is monotone and continuous. Then any sequence
{z*} generated by Algorithm 4.2.4 is convergent. If in addition (4.23) holds and

F is Lipschitiz continuous on Z + B (0,¢€), then the convergence is R-linear.

These methods above are a class of new splitting methods for (3.1). Com-
pared with a method proposed by Tseng [44], our proposed splitting methods re-
move projection step involved whenever domB # H. (Note that in the case where
domB = H, Tseng’s method may be viewed as an instance of a method proposed
by Solodov and Svaiter [39] by choosing the projection set to be H.) For a com-
parison with the Peaceman- and Douglas-Rachford family of splitting methods, we

will detail it later.



CHAPTER 4. NEW SPLITTING METHODS 34

Now we give the following splitting method:

Algorithm 4.2.5. Choose any starting point 20 € H. For any given k > 0,

k

computing 1 from zF according to

e =gk (T + P Y2k — J (%) VvE>o.
Furthermore, when F(x) = Mz + q, the iterative formula reduces to
" =gk (T + M) (¥ — T+ B (aF — MzF —¢)) VE>0,

where 7y € (0, 2).

The convergence theorem of this algorithm above is given below. However,
we do not include its proof here in that it, as noted later, is can be viewed as a
special case of the Peaceman- and Douglas-Rachford family of splitting methods.
Thus, its convergence can be implied by that of the latter. Furthermore, it is also
straightforward from deep analytical machinery of [19, 4, 5] especially for finite

dimensional case.

Theorem 4.2.5. Let B, F' : H = 'H be any given mazimal monotone mappings
with F single-valued. Choose any starting point 2° € H. Let {*} be the sequence
generated by Algorithm 4.2.5. Then if T has at least one zero, {x*} converges to a

zero of 0 € T(z). If 0 € T(x) has no any zero, {x*} is an unbounded sequence.

We turn to study Algorithm 4.2.5’s intimate connections with the Peaceman-
and Douglas-Rachford family of splitting methods. In fact, these can be easily seen
when it is implemented as follows.

Let 20 be any starting point. For any given k > 0, find the unique y* such that
y* + AB(F) 3 2F — AF(2F).
Then find 2*+1 such that
AR (@) = (1= )b + gt + AR ("),

This shows that the Peaceman-Rachford splitting method and the Douglas-
Rachford splitting method correspond to the v = 2 case and the v = 1 case
of Algorithm 4.2.5, respectively. Therefore, we can conclude in this sense that
Algorithm 4.2.5 is basically a special expression of the Peaceman- and Douglas-
Rachford family of splitting methods when F is single-valued. Furthermore, it is

also direct generalization of a method proposed by He [19] for monotone variational
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inequalities, and also that of a generalized proximal point algorithm originally

proposed by Gol’shtein and Tret’yakov [10] when F' vanishes; see also [4, 5].

We hereby wish to point out that approximate versions of these splitting meth-
ods are not under further consideration here. They may be implied by analysis
similar to previous related machinery. Furthermore, for any sequence {cy} satisfy-
ing ¢, > ¢ > 0, replacing F', B by ¢ F', ¢ B, respectively, is also applicable to our
proposed splitting methods.

4.3. Role of Error Bounds for Forward-Backward Splitting. We hereby
wishes to comment on role of error bounds for forward and backward splitting in
analysis of convergence of these splitting methods.

Let’s take Algorithm 4.2.1 as an example to show this. In fact, when we exploit
analytical structure of its convergence behavior, it can be seen that if related error
bound holds then it follows from (4.18) that

2" — Z) < 1= 772 |2k - Z].

This relation above implies that

k
b —Z] <\1—1"2n |2° - Z|.

This in turn shows that for any given accuracy requirement ¢, it can be met in less

than
2In (e |l2° = Z| 71

In(1—7"2n)

steps when Algorithm 4.2.1 is implemented. In other words, theoretically, error

(4.27)

bound condition can guarantee finite convergence of Algorithm 4.2.1 whereas finite
convergence property appears to be crucial for any given numerical method. How-
ever, numerically, if its condition number 7 is larger (even error bound holds) then
Algorithm 4.2.1 is still possibly ill-behaved in that tendency to zero of In (1—7"27)
leads to tendency to infinity of possible implementation steps described by (4.27).
Once such circumstances occur, this algorithm will be in a dilemma: The stopping
criterion is fairly good whereas such fairly good criterion may fail to guarantee real
closeness of the last iterate to the solution set. Of course, if error bound does not

hold at all, then the circumstance may become worse.

4.4. Applications. Now we show that the methods proposed are applicable
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to a class of general monotone inclusion frameworks and also demonstrate their

considerable potentials in practical applications.
Ezample 4.4.1. Consider the following monotone inclusion
0 € B(x,y,2) + F(z,y, 2) (4.28)
with
B(z,y,2) =U(z) x V(y) x {b}, F(x,y,2) = (DTz, ET2, —Dx — Ey)

where U and V are maximal monotone mappings on R™ and R", respectively, and
D e R>¥™ E e R>™ and b € R!. Then B, F are maximal monotone and F is

linear on R+ with Lipschitz constant

= \/IIDTII2 + DI+ [ ET| + [ B>

As is shown [44, Example 4] that under standard conditions this inclusion pro-
vides a most powerful framework and includes as a special case the following convex

program:

minimize  f(z) + g(y)
subject to Dx+ Ey =15
where f, g are closed proper convex functions on R™ and R, respectively, and
D e R>*™ E e R>" be R Furthermore, when m =n, D = —E =T and b= 0,
it reduces to
0e€U(x)+ V(x).
Of course, if in addition U = Ng and V = F then it corresponds to the standard
monotone variational inequalities.
Applying Algorithm 4.2.1 with such choice of B and F, we can get a new

method to solve the inclusion (4.28) above.

Let u® = (29,40, 20) be any starting point. For any given k > 0, find the unique
wk = (wk, w’;, wk) such that
WP+ UWF) 3 2F — DT 2R,
wl; + V(w];) 5 yF — ET2F,
wh =28 4 D2k + EyF — 0.
Let v := (2, y*, 2F) and r(u¥) := u¥ — wF. Then we obtain the next iterate from

the following iterative formula:

W = k= o1+ M) (),
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where
= I+ M) (u?) ]| 72 |r (u®)]?
and
0o o DT
M = 0o o ET
-D —-FE 0

Of course, in this context, Algorithm 4.2.5 corresponds to
uPt =k — (T + M) r(W®) Yk >0,
where 7 € (0, 2), M and 7(u*) are identical to the expressions above.

Ezxample 4.4.2. Let U be a maximal monotone mapping on a Hilbert space X
and V be a maximal monotone mapping on a Hilbert space Y. Let L : U — V be
a linear mapping.

A primal formulation associated with such a triple (U, V, L) is to find z € X
such that

0€U(z)+ L*V(Lz) (4.29)

where L* denote the adjoint of L.

A dual formulation associated with the triple (U, V, L) is to find y € Y such
that

0 —LU Y —L*y)+ V().

Note that an earlier version of this duality framework is due to [1] with the
restrictions X =Y, L =1.

A primal-dual formulation associated with the triple (U, V, L) is to find (z,y) €
X x Y such that

0e€U(x)+ L'y 0c—-Lz+V(y)
or equivalently
0€ B(z,y)+ F(z, y), (4.30)

where B=U x V™! and F is defined by

(2 4) ()

It is clear that F' is a linear, monotone mapping.
As is shown [9] that of the three formulations, the primal-dual formulation is in

some sense the best behaved in the sense that B+ F' is maximal monotone whenever
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maximal whenever U, V are. However, the other two are not necessarily this case;
see [9, 35] for related maximality criteria and the references cited therein. In
addition, the reader may consult [9] for their corresponding versions in the context
of convex minimization.

Now we apply Algorithm 4.2.1 with such choice of B and F' to solve the inclusion
(4.30) above.

Let u® = (2°,4°) be any starting point. For any given k& > 0, find the unique

Wk = (wk, w’y“) such that

wI; + U(w];) >k —1* k,

wlzj + V_l(w];) >yk + La”. (4.31)

Let u® := (2, *) and r(uF) := uF — wF. Then we obtain the next iterate from the

following iterative formula:
WFH = (T MT) (),

where
Yo = (I + M) ()| 72(|r (u®)]>

0 L*
M =

Of course, in this context, Algorithm 4.2.5 corresponds to

and

uFtt = uF — A (I + M)t (u®) VE >0,

where v € (0, 2), M and r(u*) are identical to the expressions above.

Note that (4.31) is equivalent to
wh =T+ VY 'y + Lab).

If the resolvant of V™! is not easy to evaluate then we can alternatively consider

the following inverse-resolvant identity [38, p. 540]:
IT+v H =1 (14+V)™"

For example, when V' = N, we can evaluate the equivalent expression I — Pg rather

than (I + Ng 1)_1 itself in that the latter is in general is not very easy to express
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explicitly; see [9] for an expression of N, 1 when C is a special box-constrained
closed set.

In [9], Eckstein and Ferris proposed smooth methods of multipliers for dual and
primal-dual formulations in the context of monotone variational inequalities and
complementarity problems. Still, they did not discuss the case of general choice L.
But, our proposed method can work well in this case.

Remark. As far as the two monotone inclusion frameworks above are concerned,
the underlying matrices of the forward mappings are the very larger scale sparse
matrices desired by us. Numerically, such sparsity properties speed convergence
of Algorithm 4.2.1 whereas such share taken by Algorithm 4.2.5 appears to be
relatively limited, even negligible. As shown in the next chapter, sparsity properties
sometimes may constitute one major reason for why the former can overrun the

latter in some cases.



Chapter 5

Numerical Tests

To numerically understand the convergence behavior of new splitting methods
in practice, we implemented Algorithm 4.2.1 and Algorithm 4.2.5 with the choice
of v = 1.9 via the following test problem in finite dimensional Euclidean space. All
codes were compiled by MatLab and run on a P-Il 667 PC under MatLab Version
6.1.

The test problem is to find z € R™" such that

LCP x>0, Mz+q>0, (z, Mx+q)=0,

where possible nonzero elements of M: a;; = —aj;,i = 1,2,...,m,j = m+1,...,m+n
are randomly generated in (0,1), ¢j = —1,7 = 1,...,m and ¢; = 1,j = m +
1,...,m+n.

The LCP above corresponds to the case of Example 2.4.2 with
C=RY, F(r)=Mz+q.
For this LCP, Algorithm 4.2.1 may be expressed as
P = k= (1 MT) 1(ab),
where v, = ||(I + MT)r(z)||72|r(z*)||* and r(z) := min{z, Mz + ¢}.
And, Algorithm 4.2.5 may be of the form
oF =gk — 5 (I + M)~ (2F),
where r(z) := min{z, Mz + ¢} with v = 1.9.

Remark. Algorithm 4.2.5 also corresponds to the v = 1.9 case of the Peaceman-
and Douglas- Rachford family of splitting methods. As far as this algorithm is con-

cerned, the v = 1.9 choice is an empirically good one. This phenomenon has been

40
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observed and reported by He [19] who suggested to choose v € (1.5,2) deliberately
to accelerate convergence.

The results of these implementations of Algorithm 4.2.1 and Algorithm 4.2.5 via
this LCP have been reported in the following table. The implementation procedures

invariantly started with the origin and stopped as soon as ||r(z*)|| < 107S.

Table: Numerical results of Algorithm 4.2.1 and Algorithm 4.2.5 on LCP

Dimesion Algorithm 4.2.1 Algorithm 4.2.5

(m, n) || Number of Iter. | CPU Time (sec.) || Number of Iter. | CPU Time (sec.)
(5, 10) 830 0.3300 1604 0.8300
(5, 20) 1430 0.7100 2474 2.2500
(5, 30) 1690 1.2100 4454 6.2000
(5, 40) 2531 2.3100 2627 5.5500
(5, 50) 3771 4.3400 7258 21.4700
(10, 5) 493 0.1600 1530 0.7700
(10, 10) 2919 1.2100 4877 3.3500
(10, 15) 6620 3.1300 11705 10.6100
(10, 20) 3146 1.8100 7659 8.1300
(10,25) 2856 2.0300 6146 8.5700
(10, 30) 6996 5.4400 4383 7.2000
(15, 5) 674 0.3300 1471 0.9800
(15, 10) 1634 0.8800 3027 2.6900
(15, 15) 16187 9.2300 22022 23.3400
(20, 5) 1312 0.7100 2065 1.7500
(20, 10) 2062 1.2100 5564 6.1000
(30, 5) 10155 7.1400 20255 28.0100
(30, 10) 2691 2.0900 4068 6.7066

From the table above, we can see that when the underlying matrices were of
the same sparsity structures as that of Examples 4.4.1-4.4.2, Algorithm 4.2.1 in
general needed less numbers of iterations and less CPU time than Algorithm 4.2.5.

The reasons for why are at least threefold: The first reason is that in general
Algorithm 4.2.5 needs O((m + n)?) operations per iteration whereas Algorithm
4.2.1 only needs O((m + n)?) operations per iteration. The second one is that

the stepsizes in Algorithm 4.2.5 are the same constant whereas Algorithm 4.2.1
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adopts adaptive stepsizes, which can take full advantage of information on the
current iterates. The last, perhaps more important is that Algorithm 4.2.1 can
exploit sparsity properties of the underlying matrices whereas Algorithm 4.2.5 fails
to better them. Therefore, Algorithm 4.2.1 in our test problem consumed much
less CPU time especially when the scale of the LCP above became larger.

Based on these observations, we can conclude that our proposed splitting meth-
ods may become the practical alternatives to the classical Peaceman- and Douglas-
Rachford family of splitting methods, especially for the two classes of monotone

inclusion frameworks described by Examples 4.4.1-4.4.2.
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