
Chapter 1

Monotone Mappings

In this chapter, our goal is to review some important results regarding monotone

mappings; most of them will be used in later chapters.

A mapping (also called operator) T : H ⇉ H is called set-valued if it corre-

sponds each point x ∈ H to a (possibly empty) subset T (x) of H. The inverse

of T , denoted by T−1(y) := {x | y ∈ T (x)}, always exists and, we always have

(T−1)−1 = T . The domain of T is defined by

domT := {x | T (x) 6= ∅}

and the range of T is defined by

rgeT := {y | ∃x : y ∈ T (x)} = domT−1

When T is single valued, we may write T (x) = y instead of T (x) = {y}.

1.1. Maximality of Monotone Mappings. Let’s begin with the definition of

(maximal) monotonicity.

Definition 1.1.1. A mapping T : H ⇉ H is called monotone if

〈x − x′, y − y′ 〉 ≥ 0 ∀y ∈ T (x), ∀y′ ∈ T (x′).

It is called maximal monotone if its graph set {(x, y) ∈ H×H | y ∈ T (x)} can not

be enlarged without destroying monotonicity.

Of course, if the mapping T is single-valued, monotone then the relation above

may be of the form 〈x − x′, T (x) − T (x′) 〉 ≥ 0 for all x and x′.
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An important example of monotone mappings is the subdifferential ∂f of a

proper convex function f . If in addition f is closed then ∂f is maximal. Of

particular interest is the indicator function δC of a convex subset C in H:

δC(x) :=

{

0 if x ∈ C,

∞ if x /∈ C.

The closedness of δC is equivalent to the closedness of C. Thus, the normal cone

mapping NC := ∂δC to C is maximal monotone when C is closed convex.

Another important example of monotone mappings is continuous, monotone

mapping. If a monotone mapping is continuous in all of H, then it is maximal

monotone.

The next is the maximality criterion for the sum of two maximal monotone

mappings; see [38, p. 557] for details.

Proposition 1.1.1. Let B,F : H ⇉ H be maximal monotone. If

ri(domB) ∩ ri(domF) 6= ∅,

then T := B + F is maximal monotone.

Deep results on this were obtained by Pennanen most recently; see [35] and the

references cited therein.

1.2. Resolvants of Monotone Mappings. We now introduce nonexpansive

mappings, which play a fundamental role in the study of monotone mappings. A

single-valued mapping N is called nonexpansive if

‖N(x) − N(x′)‖ ≤ ‖x − x′‖ ∀x, x′ ∈ H.

In his landmark paper [29], Minty established the one-to-one correspondence

between monotone and nonexpansive mappings and used it to prove the following

important facts.

Proposition 1.2.1. Let T : H ⇉ H be monotone, and let λ > 0. Then the

mapping (I + λT )−1 is monotone and nonexpansive. Moreover, T is maximal if

and only if dom(I + λT )−1 = H, equivalently, rge(I + λT ) = H.

The mappings JλT := (I + λT )−1 for λ > 0 above are called the resolvants of

T . Of course, this definition is also applicable to general mappings.
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An interesting and important facts is that the resolvant of the normal cone map-

ping to a nonempty closed convex set C is equivalent to nothing but the orthogonal

projection onto C: PC = (I + λNC)−1.

For the inverse mappings T−1, their resolvants, also called the Yosida regular-

izations of T , are related to the resolvants of T by the following inverse-resolvant

identity [38, p. 540]

(I + λT−1)−1 = λ−1(I − (I + λT )−1) ∀λ > 0.

This identity is not only beautiful in form but also useful in practice. For example,

in numerical tests, when T = NC , we can evaluate I−PC rather than (I +N−1
C )−1.

The following result is due to Lions and Mercier [1979].

Proposition 1.2.2. Let B and F be two maximal monotone mappings from

all of H into itself. Then the mapping

Nλ,B,F := JλB ◦ (2JλF − I) + (I − JλF )

is nonexpansive. Furthermore, it has the following property for all x, x′ ∈ H

‖Nλ,B,F (x) − Nλ,B,F (x′)‖2 ≤ 〈x − x′, Nλ,B,F (x) − Nλ,B,F (x′)〉.

1.3. Strong Monotonicity and Lipschitz Continuity. Strong Monotonicity

of set-valued mappings dates back to Zarantonello [45]. It plays a crucial role

in earlier analysis of convergence rate of a class of numerical methods, also in

convergence proof of some methods. Lipschitz continuity also plays a similar role

in numerical analysis.

Definition 1.3.1. A mapping T : H ⇉ H is called strongly monotone with

modulus µ > 0 if

〈x − x′, y − y′〉 ≥ µ ‖x − x′‖2 ∀y ∈ T (x), ∀y′ ∈ T (x′).

Indeed, it is equivalent to the condition that T − µI is monotone.

Definition 1.3.2. Let T : H ⇉ H be maximal monotone. The inverse mapping

T−1 is called strongly monotone with modulus ν if there exists some ν > 0 such

that

〈x − x′, y − y′〉 ≥ ν ‖y − y′‖2 ∀y ∈ T (x), ∀y′ ∈ T (x′).
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The strong monotonicity of the inverse mapping is also called the Dunn property

or the co-coercivity of T in the literature.

Definition 1.3.3. A mapping T : H ⇉ H is called Lipschitz continuous with

modulus l if there exists some l > 0 such that

‖y − y′‖ ≤ l ‖x − x′‖ ∀y ∈ T (x), ∀y′ ∈ T (x′).

It is immediate from the case x = x′ that Lipschitz continuous mappings must be

single-valued, and the relation above may be simplified to

‖T (x) − T (x′)‖ ≤ l ‖x − x′‖ ∀x, ∀x′.

For the case l ≤ 1, T is called a nonexpansive mapping, just mentioned above. For

the case l < 1, it is called a contractive mapping.

Proposition 1.3.1. Let T : H ⇉ H be a mapping. Define

N [T ] := {(x + y, x − y) | y ∈ T (x)}.

Then any of the following statements holds

(1) T is monotone if and only if N [T ] is nonexpansive;

(2) T is maximal monotone if and only if N [T ] is a nonexpansive mapping

defined on all of H;

This two statements describe the the one-to-one correspondence between mono-

tone and nonexpansive mappings established by Minty, just mentioned above.

1.4. Inclusions of Monotone Mappings. Let T : H ⇉ H be a maximal

monotone mapping. A relevant fundamental problem is to find x ∈ H such that

0 ∈ T (x). (1.1)

The monotone inclusions of this type include as special cases convex minimization,

complementarity problem, monotone variational inequalities.

The solution sets Z of such inclusions have a nice property. As proved by Minty

[1964], they must be (possibly empty) closed convex sets.

The next concepts are related to the solution sets Z.

Definition 1.4.1. Let T : H ⇉ H be a maximal monotone mapping. T−1 is

called Lipschitz continuous at the origin if 0 ∈ T (x) has the unique solution z and,

there exist ǫ > 0, τ > 0 such that

∀y ∈ B (0, ǫ), ∀x ∈ T−1(y) ‖x − z‖ ≤ τ ‖y‖.
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It is easy to check that, when T is strongly monotone with modulus µ, this

relation holds automatically with ǫ := +∞ and τ := µ−1.

This concept above was first used by Rockafellar to analyze convergence rate and

finite convergence of the PPA. Still, it requires the solution-uniqueness of 0 ∈ T (x)

and, thus appears to be restrictive. Later, it was meaningfully generalized by Luque

[1984] to the following growth condition.

Definition 1.4.2. Let T : H ⇉ H be a maximal monotone mapping. we

simply call that T−1 satisfies growth condition if there exist ǫ > 0, τ > 0 such that

∀y ∈ B (0, ǫ), ∀x ∈ T−1(y) |x − Z| ≤ τ ‖y‖.

In contrast, this growth condition is a weaker one. It at least does not require

the solution-uniqueness of 0 ∈ T (x) and is known to hold when T is polyhedral;

see Ronbison [1981]. When specialized in variational inequalities, as shown by

Tseng [2000], it also may be inferred from results on error bounds for monotone

variational inequalities.

This chapter ends with a well known result [2, p. 27]; see also [34, 44]. This

result in general plays a key role in convergence analysis of some methods for

monotone inclusions.

Proposition 1.4.1. Let T : H ⇉ H be any maximal monotone mapping. If

{xk} is a sequence in H bounded in norm and converging weakly to some x, and

{ωk} is a sequence in H converging strongly to some ω and ωk ∈ T (xk) for all k,

then ω ∈ T (x).



Chapter 2

The Proximal Point Algorithm

2.1. Introduction. In this chapter, we discuss the proximal point algorithm for

solving (1.1):

xk+1 = (I + ckT )−1(xk) ∀k ≥ 0. (2.1)

This algorithm is first proposed by Martinet [27, 28], and then generalized by

Rockafellar [37]. Its dual version in the context of convex programming and their

variants have been extensively studied; see for example [5, 12, 14, 23, 24, 43] and

the references cited therein.

In [37], Rockafellar studied convergence behavior of the following approximate

version:

xk+1 = (I + ckT )−1(xk) + ēk+1 ∀k ≥ 0, (2.2)

where ck ≥ c > 0 and ēk+1 is an error. Later, Luque [24] considerably improved

results on rate of convergence and finite convergence obtained by Rockafellar.

However, it appears to be impossible to evaluate the resolvant of T in many

cases. Therefore, we turn to consider its recently popular approximate version:

xk+1 + ck T (xk+1) ∋ xk + ek+1 ∀k ≥ 0,

which is equivalent to

xk+1 = (I + ckT )−1(xk + ek+1) ∀k ≥ 0, (2.3)

where ck > c > 0 and ek+1 is an error. Furthermore, for convenience, we henceforth

abbreviate the proximal point algorithm described by (2.3) as the PPA.

In this chapter, one major goal is to show that when the PPA is implemented

with the error criterion described by (2.17), superlinear convergence can be guar-

anteed under the growth condition. The result itself on this is not new. However,
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its error criterion is better than the one suggested by Luque and possibly best.

Especially, its proof techniques are new and powerful. Aside from this, we also

discuss other two error criteria:

Criterion 2.1.1. ‖ek+1‖ ≤ εk ,

∞
∑

k=0

ε2
k < ∞ ;

Criterion 2.1.2. ‖ek+1‖ ≤ δ ‖xk−xk+1‖, δ > 0.

Assumption. The solution of T (x) ∋ 0, say Z, is assumed to be nonempty in

this chapter.

2.2. Convergence. This section mainly addresses the issue of weak convergence

of the PPA with Criterion 2.1.1. To this end, we need to make the following two

assumptions.

Assumption 2.2.1. There exist ǫ > 0, τ > 0 such that

∀y ∈ B (0, ǫ), ∀x ∈ T−1y |x − Z| ≤ τ ‖y‖. (2.4)

Remark. This assumption is reasonably mild. For instance, for the case of

monotone variational inequalities, corresponding to T = F + NC and F single-

valued, continuous and monotone on C, it follows from [44, p. 440] that this

assumption can be inferred from well known results on local error bounds for vari-

ational inequalities; see [11, 26, 33, 36]. For the case of convex minimization, cor-

responding to T := ∂f , where f is closed proper convex, Assumption 2.2.1 can be

judged by Rockafellar [37, Proposition 6, Proposition 7]. Certainly, if f : Rn → R

is, in addition, strongly convex with modulus α > 0, then we always have

‖x − z‖ ≤ α−1‖y‖, ∀x ∈ Rn, ∀y ∈ T (x),

where z is the unique minimizer of f . That is to say, this assumption is globally

valid for the case of strong convexity of f , which, certainly, is entirely equivalent

to strong monotonicity of T := ∂f . See [37, p. 891] for a detailed exposition.

All these suffice to show that Assumption 2.2.1 is not rather restrictive but mild.

More importantly, this assumption is weaker than the one [37] as it does not require

the solution set to be a singleton. It has been applied by Luque [24] to analyze

asymptotic convergence of the PPA.

Assumption 2.2.2. There exist C > 0, C ′ > 0 such that for all k ≥ 0,

‖xk − xk+1‖ ≤ C, ‖ek‖ ≤ C ′. (2.5)
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Remark. At first glance, it may appear rather strange that this assumption

involves xk, which can not be determined before using the algorithm. Still, one may

knows a priori that it will hold, for example if domT is bounded; see [37, Remark 1].

Furthermore, when the PPA is implemented approximately with summable errors,

the resulting sequence satisfies this assumption; see [37, Thm. 1]. This fact will be

used in Corollary 2.3.1 below.

Remark. The common goal of both Assumption 2.2.1 and Assumption 2.2.2 is

nothing but to guarantee the validity of (2.10). Since, when T is strongly monotone,

it is valid globally, as showed in both Corollary 2.2.1 and Corollary 2.2.2 below,

the two assumptions are removed for analysis of the convergence and the rate of

convergence in this setting.

The result below is due to Eckstein [7, Lemma 2].

Lemma 2.2.1. Let {xk} be the sequence generated by (2.3). Then for any

z ∈ Z and all k ≥ 0 :

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − ‖xk − xk+1‖2 + 2 〈ek+1, xk+1 − z〉. (2.6)

Note that when all errors are zero the inequality above can be viewed as a

special case of [37, part (c) of Proposition 1, p. 881].

Lemma 2.2.2. Suppose that Assumptions 2.2.1–2.2.2 hold. Choose any start-

ing point x0 ∈ H. Let {xk} be the sequence generated by (2.3) with either Cri-

terion 2.1.1 or Criterion 2.1.2. Suppose that there exists an index K such that

ck ≥ c ≥ ǫ−1(C + C ′) for all k ≥ K. Then

‖xk+1 − zk‖ ≤ (1 + τc−1)(‖xk − xk+1‖ + ‖ek+1‖), ∀k ≥ K, (2.7)

where zk = argminz∈Z‖x
k − z‖.

Proof. Assumption 2.2.2 says that for all k ≥ 0

‖xk − xk+1‖ ≤ C, ‖ek+1‖ ≤ C ′. (2.8)

Since, by hypothesis, ck ≥ ǫ−1(C + C ′) for all k ≥ K, then it is easy to check that

‖c−1
k (xk − xk+1 + ek+1)‖ ≤ c−1

k (‖xk − xk+1‖ + ‖ek+1‖) ≤ ǫ, ∀k ≥ K. (2.9)

This relation, together with c−1
k (xk − xk+1 + ek+1) ∈ T (xk+1) and Assumption

2.2.1, implies that for all k ≥ K

|xk+1 − Z| ≤ τ ‖c−1
k (xk − xk+1 + ek+1)‖

≤ τc−1
k (‖xk − xk+1‖ + ‖ek+1‖), (2.10)
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where zk satisfies zk = argminz∈Z‖x
k − z‖.

On the other hand, since T is maximal monotone, Z is nonempty closed convex

[30, 31], hence it follows from the definition of zk and the nonexpansive property

of the orthogonal projection [45, Eq. (1.8)] that we have

‖zk+1 − zk‖ ≤ ‖xk − xk+1‖,

which, together with (2.10), implies that for all k ≥ K

‖xk+1 − zk‖ ≤ ‖xk+1 − zk+1‖ + ‖zk+1 − zk‖

= |xk+1 − Z| + ‖zk+1 − zk‖

≤ τc−1
k (‖xk − xk+1‖ + ‖ek+1‖) + ‖xk − xk+1‖

≤ (1 + τc−1
k )‖xk − xk+1‖ + τc−1

k ‖ek+1‖.

Since ck ≥ c for all k ≥ K, we have

‖xk+1 − zk‖ ≤ (1 + τc−1)(‖xk − xk+1‖ + ‖ek+1‖), ∀k ≥ K. (2.11)

This completes the proof of Lemma 2.2.2. We now proceed with the main

convergence results.

Theorem 2.2.1. Suppose that Assumptions 2.2.1–2.2.2 hold. Choose any

starting point x0 ∈ H. Let {xk} be the sequence generated by the PPA with Crite-

rion 2.1.1. Suppose that there exists an index K such that ck ≥ c ≥ ǫ−1(C + C ′)

for all k ≥ K. Then {|xk − Z|} converges to zero.

Proof. It follows from (2.11) from that for all k ≥ K and 0 < λ < 1

〈ek+1, xk+1 − zk〉

≤ ‖ek+1‖‖xk+1 − zk‖

≤ (1 + τc−1)‖ek+1‖(‖xk − xk+1‖ + ‖ek+1‖)

≤
1

2
(1 − λ)‖xk − xk+1‖2 +

1

2
(1 − λ)−1(1 + τc−1)2‖ek+1‖2 + (1 + τc−1)‖ek+1‖2

=
1

2
(1 − λ)‖xk − xk+1‖2 + (

1

2
(1 − λ)−1(1 + τc−1)2 + (1 + τc−1))‖ek+1‖2.

Putting this relation into (3.7) yields

‖xk+1 − zk‖2

≤ ‖xk − zk‖2 − ‖xk − xk+1‖2 + 2 〈ek+1, xk+1 − zk〉

≤ ‖xk − zk‖2 − λ‖xk − xk+1‖2 + ((1 − λ)−1(1 + τc−1)2 + 2(1 + τc−1))‖ek+1‖2,
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which further implies

|xk+1 − Z|2 ≤ |xk − Z|2 − λ‖xk − xk+1‖2 + κ ‖ek+1‖2, (2.12)

where κ := (1 − λ)−1(1 + τc−1)2 + 2(1 + τc−1) .

In view of the inequality (a + b)2 ≤ 2(a2 + b2) for a, b ≥ 0 , it follows from (2.10)

that

|xk+1 − Z|2 ≤ τ2c−2
k (‖xk − xk+1‖ + ‖ek+1‖)2

≤ 2τ2c−2
k (‖xk − xk+1‖2 + ‖ek+1‖2).

Combining this relation with (4.23) and eliminating the term ‖xk − xk+1‖2 yield

(1 +
1

2
τ−2λc2

k)|x
k+1 − Z|2 ≤ |xk − Z|2 + (λ + κ)‖ek+1‖2.

Since ck ≥ c for all k ≥ K, we have

|xk+1 − Z|2 ≤ θ |xk − Z|2 + κ′ ‖ek+1‖2, (2.13)

where

θ := (1 +
1

2
τ−2λc2)−1 < 1,

and

κ′ : = (λ + κ)(1 +
1

2
τ−2λc2)−1

= (λ + (1 − λ)−1(1 + τc−1)2 + 2(1 + τc−1))(1 +
1

2
τ−2λc2)−1.

Summing up the two sides of (2.13) and rearranging the terms, for any given L ≥ 1

we have

(1 − λ)
K+L
∑

i=K

|xi − Z|2

≤ |xK − Z|2 − θ |xK+L − Z|2 + κ′

K+L
∑

i=K+1

‖ei‖2

≤ |xK − Z|2 + κ′

K+L
∑

i=K+1

‖ei‖2,

which, together with Criterion 2.1.1, implies that
∑K+L

i=K |xi − Z|2 is bounded for

any given L ≥ 1, and thus we have {|xk − Z|} converges to zero. Furthermore, if

z is the unique solution of T (x) ∋ 0, then {‖xk − z‖} converges to zero, i.e., the

iterate sequence {xk} converges strongly to the unique solution z. �
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For the case of strong monotonicity, we can get to the following stronger results.

Corollary 2.2.1. Choose any starting point x0 ∈ H. Let {xk} be the sequence

generated by the PPA with Criterion 2.1.1. Suppose that T is strongly monotone

and lim infk→∞
ck > 0. Then {xk} converges strongly to the unique solution of

T (x) ∋ 0.

Proof. Let T be strongly monotone with modulus µ > 0. Then, in view of [37,

Prop. 5], for the unique solution of T (x) ∋ 0, say z, we have

‖x − z‖ ≤ µ−1‖y‖, ∀x, ∀y ∈ T (x),

which, together with c−1
k (xk − xk+1 + ek+1) ∈ T (xk+1), implies

‖xk+1 − z‖ ≤ µ−1‖c−1
k (xk − xk+1 + ek+1)‖

≤ µ−1c−1
k (‖xk − xk+1‖ + ‖ek+1‖)

≤ µ−1c (‖xk − xk+1‖ + ‖ek+1‖),

where c := lim infk→∞ck > 0. Note that this relation can play the same role as

(2.10) in the proof of Theorem 2.2.1, so the proof of this corollary can be proceeded

in the same way as that of Theorem 2.2.1 as far as the corresponding remainder is

concerned. �

2.3. Rate of Convergence. This section mainly addresses the issue of superlinear

convergence of the PPA with Criterion 2.1.2.

Theorem 2.3.1 Suppose that Assumptions 2.2.1–2.2.2 hold. Choose any start-

ing point x0 ∈ H. Let {xk} be the sequence generated by the PPA with Criterion

2.1.2. Suppose that there exists an index K such that ck ≥ c ≥ ǫ−1(C + C ′) for all

k ≥ K. Let δ ≤ 1
3(1 + τc−1)−1. Then {|xk − Z|} converges to zero linearly. If in

addition ck ↑ +∞, then the convergence is superlinear.

Proof. By Lemma 2.2.1, we have

‖xk+1 − zk‖2 ≤ ‖xk − zk‖2 − ‖xk − xk+1‖2 + 2 〈ek+1, xk+1 − zk〉.

Since Assumptions 2.2.1–2.2.2 hold, it follows from Lemma 2.2.2 that ck ≥ c ≥

ǫ−1(C + C ′) for all k ≥ K implies that

‖xk+1 − zk‖ ≤ (1 + τc−1)(‖xk − xk+1‖ + ‖ek+1‖), ∀k ≥ K.
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Combining the two relations with Criterion 2.2 yields

‖xk+1 − zk‖2

≤ ‖xk − zk‖2 − ‖xk − xk+1‖2 + 2 〈ek+1, xk+1 − zk〉

≤ ‖xk − zk‖2 − ‖xk − xk+1‖2 + 2 ‖ek+1‖‖xk+1 − zk‖

≤ ‖xk − zk‖2 − ‖xk − xk+1‖2 + 2δ(1 + δ)(1 + τc−1)‖xk − xk+1‖2

= ‖xk − zk‖2 − ν̃ ‖xk − xk+1‖2,

where ν̃ := 1− 2δ(1 + δ)(1 + τc−1). (Since, by hypothesis, δ ≤ 1
3(1 + τc−1)−1, then

ν̃ is a positive number.)

So, we further have

|xk+1 − Z|2 ≤ |xk − Z|2 − ν̃ ‖xk − xk+1‖2. (2.14)

This relation guarantees a sufficient descent of the distance of the iterate to the

solution set at each step.

On the other hand, from (2.10) and Criterion 2.1.2, we have

|xk+1 − Z| ≤ τ(1 + δ)c−1‖xk − xk+1‖.

Combining this relation with (2.14) and eliminating the term ‖xk − xk+1‖ yield

τ−2(1 + δ)−2c2 ν̃ |xk+1 − Z|2 ≤ |xk − Z|2 − |xk+1 − Z|2.

We further have

|xk+1 − Z| ≤ θ |xk − Z|, ∀k ≥ K,

where

θ := (1 + νc2)−
1

2 , (2.15)

ν := τ−2(1 + δ)−2ν̃ = τ−2(1 + δ)−2(1 − 2δ(1 + δ)(1 + τc−1)) (2.16)

with

δ ≤
1

3
(1 + τc−1)−1.

Obviously, if ck ↑ +∞ then the distance sequence converges {|xk−Z|} superlinearly

to zero. If, in addition, the solution of T (x) ∋ 0 is unique then the sequence {xk}

converges strongly to this solution linearly. �

As a direct consequence, we have
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Corollary 2.3.1. Choose any starting point x0 ∈ H. Let {xk} be the sequence

generated by the PPA with the error criterion

‖ek‖ ≤ min{εk, δ ‖xk+1 − xk‖}, (2.17)

and δ ≤ 1
3(1 + τc−1)−1. Suppose that Assumption 2.2.1 holds and there exists an

index K such that ck ≥ c ≥ ǫ−1(C +C ′) for all k ≥ K. Then {|xk −Z|} converges

to zero at a linear rate bounded from above by θ described by (2.15). If in addition

ck ↑ +∞, then the convergence is superlinear.

Proof. Since the error criterion (2.17) implies that all errors are summable,

which implies [37, Thm. 1] that the iterate sequence is bounded, then, the condi-

tions of Theorem 2.3.1 subsume that of this corollary, and thus the conclusions in

that theorem are in force. �

Remark. When the exact version (2.1) ( i.e. δ = 0) is implemented, this bound

for linear rate, which is θ := (1 + τ−2c2)−
1

2 , can be achieved; see [24, p. 282-283].

Furthermore, Assumption 2.2.1 is not necessary; see [20, 24].

Below we discuss an auxiliary error criterion:

‖ek+1‖ ≤ min{εk, ηk ‖x
k+1 − xk‖},

∑

εk < +∞, εk ≥ 0, ∀k ≥ 0,

where {ηk} is any given nonnegative sequence such that ηk → 0. Obviously, it

removes the traditional assumption that
∑

ηk < +∞ and, can also guarantee

superlinear convergence of the PPA. In fact, by hypothesis, since ηk → 0, then there

exists K
′

such that for all k ≥ K
′

we have ηk ≤ η. Therefore, when k ≥ K
′

+ K,

the conclusion of Corollary 2.3.1 is in force.

For the case of strong monotonicity, we can get to the following stronger results

on convergence rate of the PPA with Criterion 2.1.2.

Corollary 2.3.2. Choose any starting point x0 ∈ H. Let {xk} be the sequence

generated by the PPA with Criterion 2.1.2. Suppose that T is strongly monotone

and lim infk→∞
ck > 0. Then {xk} converges strongly to the unique solution of

T (x) ∋ 0 linearly. If in addition ck ↑ +∞, then the convergence is superlinear.

Note that for this two corollary, Assumptions 2.2.1–2.2.2 are removed since the

Lipschitz property of T−1 is globally valid.

Very interestingly, for such a special case of strong monotonicity, when we follow

the line of argument pioneered by Rockafellar (see [37, p. 879-880]), we can obtain

a stronger result than Corollary 2.3.2.

Let us begin with a technical lemma.



CHAPTER 2. THE PROXIMAL POINT ALGORITHM 14

Lemma 2.3.1. Suppose that T is strongly monotone with modulus µ > 0. Let

{xk} be the sequence generated by the PPA. Then for all k ≥ 0

‖xk+1 − z‖ ≤ (1 + ckµ)−1(‖xk − z‖ + ‖ek+1‖), (2.18)

where z is the unique solution of T (x) ∋ 0.

Proof. Denote T ′ := T − µI. By (2.3), we have

xk+1 = (I + ckT )−1(xk + ek+1)

= ((1 + ckµ)I + ckT
′)−1(xk + ek+1)

= (1 + ckµ)−1(I + (1 + ckµ)−1ckT
′)−1(xk + ek+1).

Since T is strongly monotone with modulus µ > 0, then, in view of [37, p. 879],

T ′ := T − µI is monotone and Jβk, T ′ := (I + (1 + ckµ)−1ckT
′)−1 is nonexpansive

for βk := (1 + ckµ)−1ck > 0.

On the other hand, since z is the solution of T (x) ∋ 0, then it is easy to see that

z = (1 + ckµ)−1 Jβk , T ′ (z).

So, in view of the nonexpansive property of this resolvant Jβk, T ′ , we have

‖xk+1 − z‖

= (1 + ckµ)−1‖Jβk, T ′(xk + ek+1) − Jβk, T ′(z)‖

≤ (1 + ckµ)−1‖xk − z + ek+1‖

≤ (1 + ckµ)−1(‖xk − z‖ + ‖ek+1‖).

This completes the proof of Lemma 2.3.1. �

Theorem 2.3.2. Suppose that T is strongly monotone with modulus µ > 0.

Let {xk} be the sequence generated by the PPA with ‖ek+1‖ ≤ δ′ ‖xk+1 − xk‖,

0 ≤ δ′ < 1. Then for all k ≥ 0

‖xk+1 − z‖ ≤ (1 + ckα)−1(1 + 2δ′(1 − δ′)−1)‖xk − z‖,

where z is the unique solution of T (x) ∋ 0.

Furthermore, if there exists an index K such that ck ≥ c > 2µ−1δ′(1− δ′)−1 for all

k ≥ K then

‖xk+1 − z‖ ≤ θ′ ‖xk − z‖,
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where θ′ := (1 + cµ)−1(1 + 2δ′(1 − δ′)−1) < 1.

In particular, if ck ↑ ∞, then

limk→∞

‖xk+1 − z‖

‖xk − z‖
= 0.

Proof. Since {xk} is the sequence generated by the PPA, we have

xk+1 = (I + ckT )−1(xk + ek+1).

Thus it follows from the nonexpansive property of (I + cT )−1 and this criterion

that

‖xk+1 − xk‖

= ‖(I + ckT )−1(xk + ek+1) − xk‖

≤ ‖(I + ckT )−1(xk + ek+1) − (I + ckT )−1(xk)‖ + ‖(I + ckT )−1(xk) − xk‖

≤ ‖(I + ckT )−1(xk) − xk‖ + ‖ek+1‖

≤ ‖(I + ckT )−1(xk) − xk‖ + δ′ ‖xk+1 − xk‖. (2.19)

So, we have

‖xk+1 − xk‖ ≤ (1 − δ′)−1‖(I + ckT )−1(xk) − xk‖.

This fact shows that

‖ek+1‖ ≤ δ′ ‖xk+1 − xk‖ ≤ δ′(1 − δ′)−1‖(I + ckT )−1(xk) − xk‖,

which, together with

‖(I + ckT )−1(xk) − xk‖ = ‖(I + ckT )−1(xk) − (I + ckT )−1(z) − (xk − z)‖

≤ ‖(I + ckT )−1(xk) − (I + ckT )−1(z)‖ + ‖xk − z‖

≤ 2 ‖xk − z‖,

implies that

‖ek+1‖ ≤ 2 δ′(1 − δ′)−1‖xk − z‖.

Combining this relation with Lemma 2.3.1, we have

‖xk+1 − z‖ ≤ (1 + ckµ)−1(1 + 2 δ′ (1 − δ′)−1) ‖xk − z‖.

Thus, it is not very difficult to check that the conclusions of this theorem is valid.

This completes the proof of this theorem. �
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Theorem 2.3.2 shows that for the case of strong monotonicity, if ck is sufficiently

large the iterate sequence converges to the unique solution of T (x) ∋ 0, not only

strongly, but also at least as fast as the linear rate. Furthermore, if ck ↑ ∞, the

convergence is superlinear.

This section ends with a partial converse to Corollary 2.3.1. Moreover, a partial

converse to Theorem 2.3.1 can be easily obtained in a similar way, and thus is

omitted.

Theorem 2.3.3. Choose any starting point x0 ∈ H. Let {xk} be the sequence

generated by the PPA with (2.17) with δ < 1. Suppose that ck ↑ c∞ < +∞, and

suppose that there exist τ > 0, ǫ > 0 such that

∀y ∈ B (0, ǫ), ∀x ∈ T−1y |x − Z| ≥ τ ‖y‖. (2.20)

If {xk} does not converge to Z in a finite steps. Then

lim infk→∞

|xk+1 − Z|

|xk − Z|
= 1.

Proof. Choose some fixed τ > 0. A discussion similar to the proof of Corollary

2.3.1 yields that {xk −xk+1} and {ek+1} are bounded. Thus, ck ↑ c∞ < +∞ shows

that there exists some K such that

‖c−1
k (xk − xk+1 + ek+1‖ ≤ ǫ, ∀k ≥ K.

In view of (2.20) and c−1
k (xk − xk+1 + ek+1) ∈ T (xk+1), we have

|xk+1 − Z| ≥ τ ‖c−1
k (xk − xk+1 + ek+1)‖,

which, together with ‖ek+1‖ ≤ δ‖xk − xk+1‖, δ < 1, implies that

|xk+1 − Z| ≥ τc−1
k (1 − δ)‖xk − xk+1‖. (2.21)

On the other hand, it is easy to check that

‖xk − xk+1‖ ≥ |xk − Z| − |xk+1 − Z|.

Combining this relation with (2.21) and eliminating the term ‖xk − xk+1‖ yield

ckτ
−1(1 − δ)−1|xk+1 − Z| ≥ |xk − Z| − |xk+1 − Z|.

So, we further have

lim infk→∞

|xk+1 − Z|

|xk − Z|
≥ limk→∞

1

1 + ckτ−1(1 − δ)−1
=

1

1 + c∞τ−1(1 − δ)−1
.
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Since τ can be arbitrarily large, the theorem follows. �

This theorem says that if such hypothesis hold then {|xk−Z|} can not converges

to zero faster than sublinearly; see [24, Theorem 4.1] for a related result.

2.4. Applications. This section mainly exemplifies applications of the PPA.

Example 2.4.1. When specialized in the case of convex minimization where T :=

∂f , subdifferential of some closed proper convex function f , the PPA corresponds

to

0 ∈ λk∂f(xk+1) + xk+1 − xk,

which is equivalent to

xk+1 = argmin{λkf(x) +
1

2
‖x − xk‖2}.

The method described above is the very method proposed by Martinet for convex

minimization.

Example 2.4.2. When specialized in the case of monotone variational inequali-

ties where T := NC + F , the PPA corresponds to

0 ∈ λk(NC(xk+1) + F (xk+1)) + xk+1 − xk,

which is equivalent to

xk − λkF (xk+1) ∈ (I + λkNC)xk+1 ⇔ xk+1 = (I + λkNC)−1[xk − λkF (xk+1)].

So, we have

xk+1 = PC [xk − λkF (xk+1)].

Example 2.4.3. We consider the case of evolution equations:

0 ∈
∂u(t)

∂t
+ Tu(t) u(0) = x0,

where T : H ⇉ H is maximal monotone.

Discretizing this partial differential equation yields

0 ∈
xk+1 − xk

λk
+ Txk+1

and thus we obtain

0 ∈ (I + λkT )xk+1 − xk ⇔ xk+1 = (I + λkT )−1xk.

That is, we can use the PPA to solve the evolution equations above.



Chapter 3

Classical Splitting Methods

3.1. Introduction. In the last chapter, we discussed the PPA for maximal mono-

tone mappings, and showed under standard conditions its superlinear convergence.

However, such theoretically nice convergence properties do not guarantee that the

PPA is practically implementable method. This is because that in many cases

the resolvants involved in the PPA are not very easy to evaluate. As such, when

the PPA is implemented, the number of iterations is small, but, in general, the

computational cost per iteration is too much expansive !

One alternative is to resort to so-called splitting methods for monotone map-

pings. Precisely, for the following inclusions

0 ∈ T (x),

we do not directly use the PPA while we consider the possible equivalent inclusions

0 ∈ B(x) + F (x), (3.1)

where T := B + F with B,F maximal monotone, and JλB and/or JλF are/is

relatively easier to evaluate than JλT . We can then devise a method that uses only

JλB and/or JλF , instead of JλT . All methods of such procedure are called splitting

methods.

3.2. Forward-Backward Splitting — Error Bounds. We first discuss the

simplest splitting method – forward-backward splitting method, which may be of

the following form:

xk+1 ∈ (I + λB)−1(I − λF )xk ∀k ≥ 0.

18
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When F is not single-valued, the forward-backward splitting method described

above may fail to converge; see [7]. Therefore, we merely consider the case where

F is single-valued. Of course, in this case, the forward-backward splitting method

for solving (3.1) is of the form:

xk+1 = (I + λkB)−1(I − λkF )xk ∀k ≥ 0, (3.2)

where λk ≥ λ > 0.

The following convergence theorem is due to Chen and Rockafellar [3].

Proposition 3.2.1. Suppose that F : H ⇉ H is Lipschitz continuous, mono-

tone and T = B + F : H ⇉ H is strongly monotone. Then any sequence generated

by (3.2) strongly converges to the unique solution at a linear rate.

Now our goal is to study the convergence behavior of the resulting iterates when

(3.2) is implemented approximately. To this end, we first introduce the concept of

error bounds on forward-backward splitting.

Theorem 3.2.1. Consider any maximal monotone mappings B,F : H ⇉ H

such that F is Lipschitz continuous. Let T := B+F . Then the following statements

are equivalent.

(a) There exist ǫ′ > 0, τ ′ > 0 such that

∀y ∈ B (0, ǫ′), ∀x ∈ T−1y |x − Z| ≤ τ ′ ‖y‖ (3.3)

(b) There exist ǫ > 0, τ > 0 such that

∀x ∈ Zλ(ǫ) |x − Z| ≤ τ ‖x − Jλ(x)‖ (3.4)

where Zλ(ǫ) := {x | ‖x − Jλ(x)‖ ≤ ǫ} with Jλ := (I + λB)−1(I − λF ).

Proof. (b) ⇒ (a). In fact, for any given ǫ′ > 0, it follows from [2, 44] that

∀y ∈ B (0, ǫ′), ∀x ∈ T−1(y) ‖x − Jλ(x)‖ ≤ λ ‖y‖. (3.5)

Thus, if in addition ǫ′ ≤ λ−1ǫ then

‖x − Jλ(x)‖ ≤ λ ‖y‖ ≤ λ ǫ′ ≤ ǫ.

This shows that for all y ∈ B (0, ǫ′) and for all x ∈ T−1(y),

ǫ′ ≤ λ−1ǫ ⇒ x ∈ Zλ(ǫ).

On the other hand, it follows from (b) that

x ∈ Zλ(ǫ) ⇒ |x − Z| ≤ τ ‖x − Jλ(x)‖.
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Therefore, combining the results above yields

|x − Z| ≤ τ‖x − Jλ(x)‖ ≤ τ ‖y‖ ≤ τ ′ ‖y‖,

where we let τ ′ ≥ τλ.

(a) ⇒ (b). Since Jλ(x) := (I + λB)−1(I − λF )(x),

Jλ(x) + λB(Jλ(x)) ∋ x − λF (x).

That is,

x − Jλ(x) − λF (x) ∈ λB(Jλ(x)).

Summing up λF (Jλ(x)) and then multiplying by λ−1 both sides of the relation

above yield

λ−1(x − Jλ(x)) − F (x) + F (Jλ(x)) ∈ T (Jλ(x)). (3.6)

Let y := λ−1(x− Jλ(x))−F (x) + F (Jλ(x)). The Lipschitz continuity of F implies

that for all x ∈ Zλ(ǫ) with ǫ ≤ (λ−1 + l)−1ǫ′ the following relations hold

‖y‖ ≤ (λ−1 + l)‖x − Jλ(x)‖ ≤ (λ−1 + l)ǫ ≤ ǫ′.

This shows that if ǫ ≤ (λ−1 + l)−1ǫ′ then y ∈ B (0, ǫ′). In the meanwhile, (4.8)

implies that Jλ(x) ∈ T−1(y). The two facts, together with (b), imply that if

ǫ ≤ (λ−1 + l)−1ǫ′ then

|Jλ(x) − Z| ≤ τ ′‖y‖

≤ τ ′‖λ−1(x − Jλ(x)) − F (x) + F (Jλ(x))‖

≤ τ ′(λ−1 + l)‖x − Jλ(x)‖. (3.7)

On the other hand, since Z is a nonempty closed convex set [30] and the or-

thogonal projection PZ is nonexpansive [45, Eq. (1.8)], then

‖x − PZ(x)‖

≤ ‖x − Jλ(x)‖ + ‖Jλ(x) − PZ(Jλ(x))‖ + ‖PZ(Jλ(x)) − PZ(x)‖

≤ 2‖x − Jλ(x)‖ + ‖Jλ(x) − PZ(Jλ(x))‖

Consequently, we have

|x − Z| ≤ 2 ‖x − Jλ(x)‖ + |Jλ(x) − Z|. (3.8)

Combining (3.8) and (3.7) yields that for all x ∈ Zλ(ǫ) with ǫ ≤ (λ−1 + l)−1ǫ′

|x − Z| ≤ (τ ′λ−1 + τ ′l + 2)‖x − Jλ(x)‖ ≤ τ ‖x − Jλ(x)‖, (3.9)
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where we let τ ≥ (τ ′λ−1 + τ ′l + 2).

Note that the statement (a) is known to hold when T is polyhedral [36]. Fur-

thermore, the relation (b) ⇒ (a) has been reported by Tseng in the context of

variational inequalities; see [44, p. 440] for more details.

Corollary 3.2.1. If in addition T is strongly monotone with moludus µ > 0.

Then the following statements are equivalent.

(a) ∀x, ∀y ∈ T (x) ‖x − z‖ ≤ µ−1‖y‖;

(b) ‖x − z‖ ≤ (µ−1λ−1 + µ−1l + 1)‖x − Jλ(x)‖,

where z is the unique solution to 0 ∈ T (x).

Proof. For any given x, since 0 ∈ T (z) and T is µ-strongly monotone then for

all y ∈ T (x) we have

〈x − z, y − 0〉 ≥ µ ‖x − y‖2.

And it is easily seen from the relation above that

∀x, ∀y ∈ T (x) ‖x − z‖ ≤ µ−1‖y‖.

A discussion similar to Theorem 3.2.1 yields

‖x − z‖ ≤ (µ−1λ−1 + µ−1l + 1)‖x − Jλ(x)‖.

Note that the condition number is relaxed to µ−1λ + µ−1l + 1 rather than µ−1λ +

µ−1l + 2 (cf. (3.9)) in that the solution set is a singleton.

As a consequence, it is immediate that

Corollary 3.2.2. If in addition B = NC , where C is a nonempty closed convex

subset in the Euclidean space. Then

‖x − z‖ ≤ (µ−1λ−1 + µ−1l + 1)‖x − PC [x − F (x)]‖.

Note that this global error bound is similar to global error bound for strongly

monotone variational inequalities [33]; an entirely equivalent result easily follows

from (4.7). In addition, for the case (b) of Theorem 3.2.1 in the context of varia-

tional inequalities, the reader can see [26, 36] for a related discussion.

3.3. Forward-Backward Splitting — Two Error Criteria. In this section,

we propose an approximate version of the forward-backward splitting method de-

scribed by (3.2) with two error criteria. Under standard assumptions, we prove
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global convergence of this approximate version with one criterion (see Criterion

3.3.1), and apply error bounds for forward-backward splitting to establish linear

convergence with the other one (see Criterion 3.3.2).

Consider the following approximate forward-backward splitting method

xk+1 = (I + λkB)−1(I − λkF )xk + ek+1 ∀k ≥ 0. (3.10)

Two error criteria are treated in this paper

Criterion 3.3.1. ‖ek+1‖ ≤ εk ,

∞
∑

k=0

ε2
k < ∞ ;

Criterion 3.3.2. ‖ek+1‖ ≤ η ‖xk−xk+1‖, η > 0.

Assumption 3.3.1. Assume that B,F : H ⇉ H are maximal monotone map-

pings such that F is l-Lipschitz continuous and µ-strongly monotone.

To simplify the proofs of Theorem 3.3.1 and Theorem 3.3.2, we first introduce

some technical results.

Lemma 3.3.1. Suppose that Assumption 3.3.1 holds. Let {xk} be the sequence

generated by (3.10) and z be the unique solution of (3.1). Then

(a) there exists β > 0 independent of λ < 2µ/l2 such that

‖φk‖ ≤ β (‖xk+1 − xk‖ + ‖ek+1‖),

where φk := xk − z + 2(xk+1 − xk) + λF (xk) − λF (z) − ek+1.

(b) Furthermore,

〈xk+1 − z, xk+1 − xk〉

≤ λl ‖xk+1 − xk‖‖xk − z‖ − λµ‖xk − z‖2 + β‖xk+1 − xk‖‖ek+1‖ + β‖ek+1‖2,

Proof. Let us first prove the first part of this lemma. It follows from (3.10) that

xk+1 = Jλ(xk) + ek+1.

Consequently,

‖xk − Jλ(xk)‖ ≤ ‖xk+1 − xk‖ + ‖ek+1‖. (3.11)
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On the other hand, since Assumption 3.3.1 holds, then it easily follows from

Corollary 3.2.1 and (3.11) that

‖φk‖

= ‖xk − z + 2(xk+1 − xk) + λF (xk) − λF (z) − ek+1‖

≤ 2 ‖xk+1 − xk‖ + (λ l + 1)‖xk − z‖ + ‖ek+1‖

≤ 2 ‖xk+1 − xk‖ + (λ l + 1)(µ−1λ−1 + µ−1l + 1)‖xk − Jλ(xk)‖ + ‖ek+1‖

≤ 2 ‖xk+1 − xk‖ + (λ l + 1)(µ−1λ−1 + µ−1l + 1)‖xk+1 − xk‖

+((λl + 1)(µ−1λ−1 + µ−1l + 1) + 1)‖ek+1‖.

Then there exists β > 0 independent of λ < 2µ/l2 such that

‖φk‖ ≤ β (‖xk+1 − xk‖ + ‖ek+1‖). (3.12)

Note that it is entirely reasonable to a priori require that λ < 2µ/l2 in that this

constant corresponds to the upper bound of stepsize for the exact case.

Now we are in a position to prove the second part of this lemma.

By (3.10), one has

(I + λB)(xk+1 − ek+1) ∋ (I − λF )(xk),

which implies

λ−1(xk − xk+1 + ek+1) − F (xk) ∈ B(xk+1 − ek+1). (3.13)

On the other hand, 0 ∈ B(z) + F (z) yields

−F (z) ∈ B(z). (3.14)

Since B is (maximal) monotone, then it follows from (3.13) and (3.14) that

〈xk+1 − ek+1 − z, λ−1(xk − xk+1 + ek+1) − F (xk) + F (z)〉 ≥ 0. (3.15)

Rearranging the terms of this relation above yields

〈xk+1 − z, xk+1 − xk〉

≤ −λ〈xk+1 − z, F (xk) − F (z)〉 + 〈ek+1, φk〉

≤ −λ〈xk+1 − xk, F (xk) − F (z)〉 − λ〈xk − z, F (xk) − F (z)〉 + 〈ek+1, φk〉
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where φk is defined in (a) of this lemma.

Since F is l-Lipschitz continuous and µ-strongly monotone, then this relation above,

together with (3.12), implies that

〈xk+1 − z, xk+1 − xk〉

≤ λl ‖xk+1 − xk‖‖xk − z‖ − λµ‖xk − z‖2 + ‖ek+1‖‖φk‖

≤ λl ‖xk+1 − xk‖‖xk − z‖ − λµ‖xk − z‖2 + β‖xk+1 − xk‖‖ek+1‖ + β‖ek+1‖2.

The proof of this lemma is complete. �

Theorem 3.3.1. Suppose that Assumption 3.3.1 holds. Choose any starting

point x0 ∈ H. Let {xk} be the sequence generated by (3.10) with Criterion 3.3.1.

Suppose that λ < 2(1 − θ)µ/l2 , where θ ∈ (0, 1). Then {xk} converges strongly to

the unique solution to (3.1), say z.

Proof. According to the equality ‖u + v‖2 = ‖u‖2 − ‖v‖2 + 2〈v, u + v〉 for all

u, v ∈ H, one has

‖xk+1 − z‖2 = ‖xk − z‖2 − ‖xk+1 − xk‖2 + 2〈xk+1 − z, xk+1 − xk〉. (3.16)

On the other hand, it follows from (b) of Lemma 3.3.1 that

2〈xk+1 − z, xk+1 − xk〉

≤ 2λl ‖xk+1 − xk‖‖xk − z‖ − 2λµ‖xk − z‖2 + 2‖ek+1‖‖φk‖

≤ (1 − θ)‖xk+1 − xk‖2 + (1 − θ)−1λ2l2‖xk − z‖2 − 2λµ‖xk − z‖2

+2β‖ek+1‖‖xk+1 − xk‖ + 2β‖ek+1‖2

≤ (1 − θ)‖xk+1 − xk‖2 + (1 − θ)−1λ2l2‖xk − z‖2 − 2λµ‖xk − z‖2

+θ‖xk+1 − xk‖2 + θ−1β2‖ek+1‖2 + 2β‖ek+1‖2

≤ ‖xk+1 − xk‖2 + ((1 − θ)−1λ2l2 − 2λµ)‖xk − z‖2

+(θ−1β2 + 2β)‖ek+1‖2.

which, together with (3.16), implies

‖xk+1 − z‖2 ≤ λ‖xk − z‖2 + (θ−1β2 + 2β)‖ek+1‖2. (3.17)

where

κ := (1 − θ)−1λ2l2 − 2λµ + 1. (3.18)

Summing up, rearranging both sides of (3.17) and considering the nonnegative-

ness of ‖xk+1 − z‖2 yield

(1 − κ)

k
∑

i=0

‖xi − z‖2 ≤ ‖x0 − z‖2 +

k
∑

i=0

(θ−1β2 + 2β)‖ei+1‖2. (3.19)
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Since λ < 2(1 − θ)µ/l2, it follows from (3.18) that κ < 1. Moreover, in view

of Criterion 3.1, we further have that
∑k

i=0 ‖e
i+1‖2 < +∞. These show that

∑k
i=0 ‖x

i − z‖2 < +∞ implying that {xk} converges strongly to z.

The proof of this theorem is complete. �

Theorem 3.3.2. Suppose that Assumption 3.3.1 holds. Suppose that the step-

size λ < 2(1 − θ)µ/l2 , where θ ∈ (0, 1) is any given sufficiently small positive

number. Choose any starting point x0 ∈ H. Let {xk} be the sequence generated

by (3.10) with Criterion 3.3.2, where η := (
√

1 + 2β−1θ − 1)/2, and z be the

unique solution. Then {xk} is strongly convergent at a linear rate no larger than
√

1 + (1 − θ)−1λ2l2 − 2λµ.

Proof. Criterion 3.3.2 says

‖ek+1‖ ≤ η‖xk+1 − xk‖. (3.20)

On the other hand, according to the proof of Theorem 3.3.1, the following

relations hold

‖xk+1 − z‖2

≤ ‖xk − z‖2 − ‖xk+1 − xk‖2 + 2c l‖xk+1 − xk‖‖xk − z‖

−2cµ‖xk − z‖2 + 2β‖ek+1‖(‖xk+1 − xk‖ + ‖ek+1‖).

Consequently, it follows from the relation above and (3.20) that

‖xk+1 − z‖2

≤ ‖xk − z‖2 − ‖xk+1 − xk‖2 + (1 − θ)‖xk+1 − xk‖2

+(1 − θ)−1λ2l2‖xk − z‖2 − 2λµ‖xk − z‖2 + 2βη(1 + η)‖xk+1 − xk‖2.

Since η := (
√

1 + 2β−1θ − 1)/2, then it is easy to check that 2βη(1 + η) = θ.

Therefore, this relation above implies that

‖xk+1 − z‖2

≤ (1 + (1 − θ)−1λ2l2 − 2λµ)‖xk − z‖2 − (θ − 2βη(1 + η))‖xk+1 − xk‖2

= (1 + (1 − θ)−1λ2l2 − 2λµ)‖xk − z‖2.

This shows that the iterate sequence {xk} is strongly convergent at linear conver-

gence rate no larger than
√

1 + (1 − θ)−1λ2l2 − 2λµ.

Note that some key techniques in the proofs of Lemma 3.3.1, Theorems 3.3.1–

3.3.2 can be founded in [26, 22, 13].
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3.4. Peaceman- and Douglas-Rachford Splitting. We now review the Peaceman-

and Douglas-Rachford family of splitting methods for solving the monotone in-

clusions (3.1); each involves in resolvants of both the forward mapping and the

backward mapping.

The corresponding Peaceman-Rachford splitting method is:

xk+1 = (2(I + λB)−1 − I) (2(I + λF )−1 − I) xk ∀k ≥ 0.

The corresponding Douglas-Rachford splitting method is:

xk+1 = (I + λF )−1[(I + λB)−1(I − λF ) + λF ] xk ∀k ≥ 0.

Furthermore, they can be implemented efficiently in the following ways.

Let x0 be any starting point. For any given k ≥ 0, find the unique yk such that

yk + λB(yk) ∋ xk − λF (xk).

Then find xk+1 such that

xk+1 + λF (xk+1) = (1 − γ)xk + γyk + λF (xk).

The γ = 1 case corresponds to the Douglas-Rachford splitting, whereas the

γ = 2 case corresponds to the Peaceman-Rachford splitting [23]. Furthermore, the

γ ∈ (0, 2) cases have already been well studied in [7, 8].



Chapter 4

New Splitting Methods

In this chapter and the next chapter, we are mainly concerned with (1.1) with such

splitting of T := B + F where B is also maximal monotone and F is continuous

monotone. Then, we fully exploit this kind of special structure and develop a class

of new and effective splitting methods for solving (3.1).

4.1. Basic Inequalities. Now we aim to develop new splitting methods for solving

(3.1) in the context above. To this end, we first give some basic inequalities.

Lemma 4.1.1. Let B,F : H ⇉ H be two maximal monotone mappings. If F

is single-valued, then for any zero of (2.15), say z, we have

〈x − Jλ(x), x + λF (x) − z − λF (z)〉 ≥ ‖x − Jλ(x)‖2. (4.1)

If in addition F (x) := Mx + q, where M is a linear mapping from H to H and

q ∈ H, then

〈x−z, (I+MT )(x−(I+B)−1(x−Mx−q))〉 ≥ ‖x−(I+B)−1(x−Mx−q)‖2. (4.2)

Proof. Since Jλ(x) := (I + λB)−1(I − λF )(x), we have

Jλ(x) + λB(Jλ(x)) ∋ x − λF (x).

That is,

λ−1(x − Jλ(x)) − F (x) ∈ B(Jλ(x)). (4.3)

On the other hand, since z is a zero of T := B + F then we have

−F (z) ∈ B(z) (4.4)

27
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It follows from (4.3), (4.4) and monotonicity of B that

〈λ−1(x − Jλ(x)) − (F (x) − F (z)), Jλ(x) − z〉 ≥ 0.

i.e.,

〈λ−1(x − Jλ(x)) − (F (x) − F (z)), x − z − (x − Jλ(x))〉 ≥ 0. (4.5)

Rearranging the terms of (4.5) yields

〈x−Jλ(x), x+λF (x)− z −λF (z)〉 ≥ ‖x−Jλ(x)‖2 +λ〈F (x)−F (z), x− z〉. (4.6)

Consequently, it follows from (4.7) and monotonicity of F that

〈x − Jλ(x), x + λF (x) − z − λF (z)〉 ≥ ‖x − Jλ(x)‖2. (4.7)

Furthermore, the relation (4.2) similarly follows. �

Lemma 4.1.2. Let B,F : H ⇉ H be two maximal monotone mappings. If F

is single-valued, then for any zero of (2.15), say z, we have

〈x − z, x − Jλ(x) − λF (x) + λF (Jλ(x))〉

≥ ‖x − Jλ(x)‖2 − λ〈x − Jλ(x), F (x) − F (Jλ(x))〉. (4.8)

Proof. By (4.5), we have

〈λ−1(x − Jλ(x)) − (F (x) − F (z)), x − z − (x − Jλ(x))〉 ≥ 0,

which, together with monotonicity of F , i.e.,

〈F (Jλ(x)) − F (z), x − z − (x − Jλ(x))〉 ≥ 0,

implies that

〈λ−1(x − Jλ(x)) − F (x) + F (Jλ(x))), x − z − (x − Jλ(x))〉 ≥ 0.

Rearranging the terms of this relation yields

〈x − z, x − Jλ(x) − λF (x) + λF (Jλ(x))〉

≥ ‖x − Jλ(x)‖2 − λ〈x − Jλ(x), F (x) − F (Jλ(x))〉.

4.2. New Splitting Methods. We now make use of the above-mentioned in-

equalities to develop some new splitting methods for solving (3.1).
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Algorithm 4.2.1. Let F (x) = Mx + q. Choose any starting point x0 ∈ H.

For any given k ≥ 0, computing xk+1 from xk according to

xk+1 = xk − γk(I + MT )r(xk) ∀k ≥ 0. (4.9)

where

r(x) = x − (I + B)−1(x − Mx − q),

γk = ‖(I + MT )r(xk)‖−2‖r(xk)‖2. (4.10)

That deserving much attention is that domB is convex but not necessarily closed

[38, Chapter 12] and all the resulting iterates do not necessarily lie in domB, but

the solution set Z is a nonempty closed convex set contained in domB. So, as

proven below, the corresponding iterates must weakly converge to some element of

Z in an asymptotic way.

The convergence proof of Algorithm 4.2.1 is similar to that of [40, Theorem 2.1]

except using (4.2) instead of the two inequalities in line -7 and line -9 in [40, p.

1817]; see [17] for an earlier discussion on convergence. Furthermore, the proof of

convergence rate is similar to that of [40, Theorem 2.1], but using (4.11) instead

of [40, Eq. (1.3)]. It is also similar in spirit to those in [42, 25, 26]. However, we

include its proof here for completeness.

Theorem 4.2.1. Any sequence {xk} generated by Algorithm 4.2.1 is weakly

convergent. Let Z(ǫ) = {x | r(x) ≤ ǫ}. If there exist ǫ > 0, τ > 0 such that

|x − Z| ≤ τ ‖r(x)‖, ∀x ∈ Z(ǫ). (4.11)

Then the convergence is R-linear.

Proof. Let z ∈ Z. For any given k ≥ 0, we have from (4.19) that

‖xk+1 − z‖2

= ‖xk − z − γk(I + MT )r(xk)‖2

= ‖xk − z‖2 − 2γk〈x
k − z, (I + MT )r(xk)〉 + γ2

k ‖(I + MT )r(xk)‖2 (4.12)

On the other hand, in view of (4.2) in Lemma 4.1.1, we have

〈xk − z, (I + MT )r(xk)〉 ≥ ‖r(xk)‖2.

Using this to bound the next-to-last term in (4.12) yields the following relation

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − 2γk‖r(x
k)‖2 + γ2

k ‖(I + MT )r(xk)‖2

= ‖xk − z‖2 − ‖(I + MT )r(xk)‖−2‖r(xk)‖4 (4.13)

≤ ‖xk − z‖2 − ‖(I + MT )‖−2‖r(xk)‖2, (4.14)
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where the equality follows from (4.10). The remaining argument is patterned after

the proof of [37, Thm. 1] and of [42, Thm. 1] and of [40, Thm. 2.1].

The relation (4.14) above shows that {‖xk − z‖} is also bounded above. Thus,

{xk} must be bounded and at least has one weak cluster point, say x∞. Let {xk(j)}

be some subsequence converging weakly to x∞. Let J(x) = (I +B)−1(x−Mx−q).

It is easy to check that r(xk) = xk −J(xk) → 0 strongly, thus {J(xk(j))} converges

weakly to x∞ as well. Furthermore, it can be seen that J(xk(j)) ∈ domB is bounded

in norm for all k(j).

On the other hand, since J(xk) = (I + B)−1(xk − Mxk − q), we have

xk − J(xk) − Mxk − q ∈ B(J(xk)).

Furthermore, it is immediate that when k(j) → +∞ we have

xk(j) − J(xk(j)) − Mxk(j) − q → −Mx∞ − q strongly. (4.15)

So, in view of Proposition 1.4.1 with T = B, we have

−Mx∞ − q ∈ B(x∞).

This implies that x∞ is a zero of (3.1).

The uniqueness argument of weak cluster point easily follows from the one of

Martinet [27]; see also [37, 5]. Thus is omitted.

The next goal is to show its local linear convergence. Since (4.13) holds for all

k and all z ∈ Z, we obtain for all k

‖xk+1 − z‖2

≤ ‖xk − z‖2 − ‖(I + MT )r(xk)‖−2‖r(xk)‖4

= ‖xk − z‖2 − ‖(I + MT )r(xk)‖−2‖r(xk)‖4

≤ ‖xk − z‖2 − η‖r(xk)‖2,

where we let η = ‖(I + MT )‖−2. So, we have

|xk+1 − Z|2 ≤ |xk − Z|2 − ‖(I + MT )r(xk)‖−2‖r(xk)‖4, (4.16)

and

|xk+1 − Z|2 ≤ |xk − Z|2 − η‖r(xk)‖2. (4.17)

On the other hand, since ‖r(xk)‖ → 0, we have ‖r(xk)‖ ≤ ǫ for all k greater

than some k̄, in which case (4.11) yields |xk − Z| ≤ τ‖r(xk)‖. Combing this and

(4.17) yields

|xk+1 − Z|2 ≤ |xk − Z|2 −
η

τ2
|xk − Z|2 (4.18)
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for all k > k̄, so {|xk − Z|} converges to zero in the quotient sense and, by (4.17),

{r(xk)} converges to R-linearly to zero. Since by (4.9), (4.10) and (4.16) we have

‖xk − xk+1‖ = ‖(I + MT )r(xk)‖−1‖r(xk)‖2 ≤ (|xk − Z|2 − |xk+1 − Z|2)1/2

for all k, it follows from {|xk − Z|} → 0 in the quotient sense that {‖xk − xk+1‖}

converges R-linearly to zero and hence {xk} converges R-linearly. �

Algorithm 4.2.1 can be further extended by replacing the term (I + B)−1(x −

Mx − q) in the definition of r(x) with a more general matrix-splitting term. In

particular, consider the following algorithm.

Algorithm 4.2.2. Choose any starting point x0 ∈ H and any positive definite

matrix M ′. For any given k ≥ 0, computing xk+1 from xk according to

xk+1 = xk − γk(M
′ + MT )(xk − uk) ∀k ≥ 0, (4.19)

where uk is the unique solution of the nonlinear equations

uk = (I + B)−1(uk − Mxk − q + M ′(xk − uk))

and

γk = ‖(M ′ + MT )(xk − uk)‖−2〈xk − uk, M ′(xk − uk)〉. (4.20)

Note that if we choose M ′ = I, then Algorithm 4.2.2 reduces to Algorithm

4.2.1. We have the following result whose proof is similar to that of Theorem 4.2.1

and thus is omitted.

Theorem 4.2.2. Any sequence {xk} generated by Algorithm 4.2.2 is conver-

gent. If in addition (4.11) holds. Then the convergence is R-linear.

Remark. Impressively, we are unable to propose a generalized version of [15,

Algorithm PC] or [40, Algorithm 2.3]. This mainly results from the absence of an

appropriate generalized form of the inequality:

〈x − PC(x − Mx − q), Mx + q〉 ≥ ‖x − PC(x − Mx − q)‖2

while [15, Algorithm PC] or [40, Algorithm 2.3] for affine complementarity problems

or variational inequalities depends heavily on this inequality in a way that does not

seem to carry over to the case of (3.1).

Algorithm 4.2.3. Choose any starting point x0 ∈ H and λ ∈ (0, 1/l), where l

is a constant satisfying

〈x′ − x, F (x′) − F (x)〉 ≤ l ‖x′ − x‖2 ∀x′, ∀x.
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For any given k ≥ 0, computing xk+1 from xk according to

xk+1 = xk − γk(x
k − Jλ(xk) − λF (xk) + λF (Jλ(xk)) ∀k ≥ 0, (4.21)

where

γk = (1 − λ l)‖xk − Jλ(xk) − λF (xk) + λF (Jλ(xk)‖−2‖xk − Jλ(xk)‖2. (4.22)

The proof below is similar to that of [40, Theorem 3.1] except using (4.8)

instead of the inequalities in lines 3-12 in [40, p. 1822] for convergence (see also

[18]), whereas using (4.23) instead of [40, Eq. (1.3)] for rate of convergence.

Theorem 4.2.3. Let F (x) is monotone and Lipschitiz continuous. Then any

sequence {xk} generated by Algorithm 4.2.3 is convergent. If in addition there exist

τ > 0, ǫ > 0 such that

|x − Z| ≤ τ ‖x − Jλ(x)‖, ∀x ∈ Zλ(ǫ). (4.23)

Then for the choice of λ = 1 (it can be met by trivially scaling Lipschitz constant

of F ), the convergence is R-linear.

Proof. Let z ∈ Z. For any given k ≥ 0, we have from (4.21) that

‖xk+1 − z‖2

= ‖xk − z − γk(x
k − Jλ(xk) − λF (xk) + λF (Jλ(xk))‖2

= ‖xk − z‖2 − 2γk〈x
k − z, xk − Jλ(xk) − λF (xk) + λF (Jλ(xk))〉

+γ2
k ‖x

k − Jλ(xk) − λF (xk) + λF (Jλ(xk))‖2. (4.24)

On the other hand, it follows from (4.8) that

〈xk − z, xk − Jλ(xk) − Jλ(xk)F (xk) + λF (Jλ(xk))〉

≥ ‖xk − Jλ(xk)‖2 − λ〈xk − Jλ(xk), F (xk) − F (Jλ(xk))〉.

Using this to bound the next-to-last term in (4.24) yields

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − 2γk(1 − λ l)‖xk − Jλ(xk)‖2 +

γ2
k ‖x

k − Jλ(xk) − λF (xk) + λF (Jλ(xk))‖2

= ‖xk − z‖2 − (1 − λ l)2‖xk − Jλ(xk) − λF (xk) +

λF (Jλ(xk))‖−2‖xk − Jλ(xk)‖4, (4.25)

where the equality follows from (4.22).
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The remainder of the proof is similar to that of Theorem 4.2.1, but using (4.23)

instead of (4.11). In fact, since we assume, in addition, that λ = 1, in view of

(4.21) and (4.26), we have

‖xk+1 − xk‖2 = (1 − l)‖xk − J(xk) − F (xk) + F (J(xk))‖−1‖xk − J(xk)‖2

≥ (1 − l)(1 + l′)−1‖xk − J(xk)‖

for all k, where l′ denotes Lipschitz constant of F . Thus, the rightmost term in

(4.25) is bounded above by a positive constant times −‖xk − J(xk)‖2 and, when

this term converges R-linearly to zero as k → ∞, so does ‖xk+1 −xk‖2; hence {xk}

converges R-linearly.

Algorithm 4.2.4. Choose any starting point x0 ∈ H and λ−1 ∈ (0,+∞). Also

choose ρ ∈ (0, 1) and β ∈ (0, 1). For any given k ≥ 0, computing (xk+1, λk) from

(xk, λk−1) where λk is the largest λ ∈ {λk−1, λk−1β, λk−1β
2, ...} satisfying

λ〈xk − Jλ(xk), F (xk) − F (Jλ(xk))〉 ≤ (1 − ρ)‖xk − Jλ(xk)‖2,

and let

xk+1 = xk − γk(x
k − Jλk

(xk) − λkF (xk) + λkF (Jλk
(xk))) ∀k ≥ 0,

where

γk = ρ‖(xk − Jλk
(xk)) − λkF (xk) + λkF (Jλk

(xk))‖−2‖xk − Jλk
(xk)‖2. (4.26)

Below we present the convergence results of Algorithm 4.2.4. The proof is

patterned after that of Algorithm 4.2.3 and thus is omitted; see [40, 41] for its

special versions in the context of monotone variational inequalities.

Theorem 4.2.4. Let F (x) is monotone and continuous. Then any sequence

{xk} generated by Algorithm 4.2.4 is convergent. If in addition (4.23) holds and

F is Lipschitiz continuous on Z + B (0, ǫ), then the convergence is R-linear.

These methods above are a class of new splitting methods for (3.1). Com-

pared with a method proposed by Tseng [44], our proposed splitting methods re-

move projection step involved whenever domB 6= H. (Note that in the case where

domB = H, Tseng’s method may be viewed as an instance of a method proposed

by Solodov and Svaiter [39] by choosing the projection set to be H.) For a com-

parison with the Peaceman- and Douglas-Rachford family of splitting methods, we

will detail it later.
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Now we give the following splitting method:

Algorithm 4.2.5. Choose any starting point x0 ∈ H. For any given k ≥ 0,

computing xk+1 from xk according to

xk+1 = xk − γ (I + F )−1(xk − J(xk)) ∀k ≥ 0.

Furthermore, when F (x) = Mx + q, the iterative formula reduces to

xk+1 = xk − γ (I + M)−1(xk − (I + B)−1(xk − Mxk − q)) ∀k ≥ 0,

where γ ∈ (0, 2).

The convergence theorem of this algorithm above is given below. However,

we do not include its proof here in that it, as noted later, is can be viewed as a

special case of the Peaceman- and Douglas-Rachford family of splitting methods.

Thus, its convergence can be implied by that of the latter. Furthermore, it is also

straightforward from deep analytical machinery of [19, 4, 5] especially for finite

dimensional case.

Theorem 4.2.5. Let B,F : H ⇉ H be any given maximal monotone mappings

with F single-valued. Choose any starting point x0 ∈ H. Let {xk} be the sequence

generated by Algorithm 4.2.5. Then if T has at least one zero, {xk} converges to a

zero of 0 ∈ T (x). If 0 ∈ T (x) has no any zero, {xk} is an unbounded sequence.

We turn to study Algorithm 4.2.5’s intimate connections with the Peaceman-

and Douglas-Rachford family of splitting methods. In fact, these can be easily seen

when it is implemented as follows.

Let x0 be any starting point. For any given k ≥ 0, find the unique yk such that

yk + λB(yk) ∋ xk − λF (xk).

Then find xk+1 such that

xk+1 + λF (xk+1) = (1 − γ)xk + γ yk + λF (xk).

This shows that the Peaceman-Rachford splitting method and the Douglas-

Rachford splitting method correspond to the γ = 2 case and the γ = 1 case

of Algorithm 4.2.5, respectively. Therefore, we can conclude in this sense that

Algorithm 4.2.5 is basically a special expression of the Peaceman- and Douglas-

Rachford family of splitting methods when F is single-valued. Furthermore, it is

also direct generalization of a method proposed by He [19] for monotone variational
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inequalities, and also that of a generalized proximal point algorithm originally

proposed by Gol’shtein and Tret’yakov [10] when F vanishes; see also [4, 5].

We hereby wish to point out that approximate versions of these splitting meth-

ods are not under further consideration here. They may be implied by analysis

similar to previous related machinery. Furthermore, for any sequence {ck} satisfy-

ing ck ≥ c > 0, replacing F , B by ckF , ckB, respectively, is also applicable to our

proposed splitting methods.

4.3. Role of Error Bounds for Forward-Backward Splitting. We hereby

wishes to comment on role of error bounds for forward and backward splitting in

analysis of convergence of these splitting methods.

Let’s take Algorithm 4.2.1 as an example to show this. In fact, when we exploit

analytical structure of its convergence behavior, it can be seen that if related error

bound holds then it follows from (4.18) that

|xk+1 − Z| ≤
√

1 − τ−2 η |xk − Z|.

This relation above implies that

|xk − Z| ≤
√

1 − τ−2 η
k
|x0 − Z|.

This in turn shows that for any given accuracy requirement ε, it can be met in less

than
2 ln (ε ‖x0 − Z‖−1)

ln (1 − τ−2 η)
(4.27)

steps when Algorithm 4.2.1 is implemented. In other words, theoretically, error

bound condition can guarantee finite convergence of Algorithm 4.2.1 whereas finite

convergence property appears to be crucial for any given numerical method. How-

ever, numerically, if its condition number τ is larger (even error bound holds) then

Algorithm 4.2.1 is still possibly ill-behaved in that tendency to zero of ln (1−τ−2 η)

leads to tendency to infinity of possible implementation steps described by (4.27).

Once such circumstances occur, this algorithm will be in a dilemma: The stopping

criterion is fairly good whereas such fairly good criterion may fail to guarantee real

closeness of the last iterate to the solution set. Of course, if error bound does not

hold at all, then the circumstance may become worse.

4.4. Applications. Now we show that the methods proposed are applicable
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to a class of general monotone inclusion frameworks and also demonstrate their

considerable potentials in practical applications.

Example 4.4.1. Consider the following monotone inclusion

0 ∈ B(x, y, z) + F (x, y, z) (4.28)

with

B(x, y, z) = U(x) × V (y) × {b}, F (x, y, z) = (DT z, ET z, −Dx − Ey)

where U and V are maximal monotone mappings on Rm and Rn, respectively, and

D ∈ Rl×m, E ∈ Rl×n and b ∈ Rl. Then B, F are maximal monotone and F is

linear on Rl+m+n with Lipschitz constant

l =
√

‖DT ‖2 + ‖D‖2 + ‖ET ‖2 + ‖E‖2.

As is shown [44, Example 4] that under standard conditions this inclusion pro-

vides a most powerful framework and includes as a special case the following convex

program:

minimize f(x) + g(y)

subject to Dx + Ey = b

where f , g are closed proper convex functions on Rm and Rn, respectively, and

D ∈ Rl×m, E ∈ Rl×n, b ∈ Rl. Furthermore, when m = n, D = −E = I and b = 0,

it reduces to

0 ∈ U(x) + V (x).

Of course, if in addition U = NC and V = F then it corresponds to the standard

monotone variational inequalities.

Applying Algorithm 4.2.1 with such choice of B and F , we can get a new

method to solve the inclusion (4.28) above.

Let u0 = (x0, y0, z0) be any starting point. For any given k ≥ 0, find the unique

ωk := (ωk
x, ωk

y , ωk
z ) such that

ωk
x + U(ωk

x) ∋ xk − DT zk,

ωk
y + V (ωk

y ) ∋ yk − ET zk,

ωk
z = zk + Dxk + Eyk − b.

Let uk := (xk, yk, zk) and r(uk) := uk −ωk. Then we obtain the next iterate from

the following iterative formula:

uk+1 = uk − γk(I + MT ) r(uk),
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where

γk = ‖(I + MT )r(uk)‖−2‖r(uk)‖2

and

M =









0 0 DT

0 0 ET

−D −E 0









Of course, in this context, Algorithm 4.2.5 corresponds to

uk+1 = uk − γ (I + M)−1r(uk) ∀k ≥ 0,

where γ ∈ (0, 2), M and r(uk) are identical to the expressions above.

Example 4.4.2. Let U be a maximal monotone mapping on a Hilbert space X

and V be a maximal monotone mapping on a Hilbert space Y . Let L : U → V be

a linear mapping.

A primal formulation associated with such a triple (U, V, L) is to find x ∈ X

such that

0 ∈ U(x) + L∗V (Lx) (4.29)

where L∗ denote the adjoint of L.

A dual formulation associated with the triple (U, V, L) is to find y ∈ Y such

that

0 ∈ −LU−1(−L∗y) + V −1(y).

Note that an earlier version of this duality framework is due to [1] with the

restrictions X = Y , L = I.

A primal-dual formulation associated with the triple (U, V, L) is to find (x, y) ∈

X × Y such that

0 ∈ U(x) + L∗y 0 ∈ −Lx + V −1(y)

or equivalently

0 ∈ B(x, y) + F (x, y), (4.30)

where B = U × V −1 and F is defined by

F (u) =

(

0 L∗

−L 0

)

u u =

(

x

y

)

It is clear that F is a linear, monotone mapping.

As is shown [9] that of the three formulations, the primal-dual formulation is in

some sense the best behaved in the sense that B+F is maximal monotone whenever
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maximal whenever U , V are. However, the other two are not necessarily this case;

see [9, 35] for related maximality criteria and the references cited therein. In

addition, the reader may consult [9] for their corresponding versions in the context

of convex minimization.

Now we apply Algorithm 4.2.1 with such choice of B and F to solve the inclusion

(4.30) above.

Let u0 = (x0, y0) be any starting point. For any given k ≥ 0, find the unique

ωk := (ωk
x, ωk

y) such that

ωk
x + U(ωk

x) ∋ xk − L∗yk,

ωk
y + V −1(ωk

y ) ∋ yk + Lxk. (4.31)

Let uk := (xk, yk) and r(uk) := uk −ωk. Then we obtain the next iterate from the

following iterative formula:

uk+1 = uk − γk (I + MT ) r(uk),

where

γk = ‖(I + MT )r(uk)‖−2‖r(uk)‖2

and

M =

(

0 L∗

−L 0

)

Of course, in this context, Algorithm 4.2.5 corresponds to

uk+1 = uk − γ (I + M)−1r(uk) ∀k ≥ 0,

where γ ∈ (0, 2), M and r(uk) are identical to the expressions above.

Note that (4.31) is equivalent to

ωk
y = (I + V −1)−1(yk + Lxk).

If the resolvant of V −1 is not easy to evaluate then we can alternatively consider

the following inverse-resolvant identity [38, p. 540]:

(I + V −1)−1 = I − (I + V )−1.

For example, when V = NC , we can evaluate the equivalent expression I−PC rather

than (I + N−1
C )−1 itself in that the latter is in general is not very easy to express
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explicitly; see [9] for an expression of N−1
C when C is a special box-constrained

closed set.

In [9], Eckstein and Ferris proposed smooth methods of multipliers for dual and

primal-dual formulations in the context of monotone variational inequalities and

complementarity problems. Still, they did not discuss the case of general choice L.

But, our proposed method can work well in this case.

Remark. As far as the two monotone inclusion frameworks above are concerned,

the underlying matrices of the forward mappings are the very larger scale sparse

matrices desired by us. Numerically, such sparsity properties speed convergence

of Algorithm 4.2.1 whereas such share taken by Algorithm 4.2.5 appears to be

relatively limited, even negligible. As shown in the next chapter, sparsity properties

sometimes may constitute one major reason for why the former can overrun the

latter in some cases.



Chapter 5

Numerical Tests

To numerically understand the convergence behavior of new splitting methods

in practice, we implemented Algorithm 4.2.1 and Algorithm 4.2.5 with the choice

of γ = 1.9 via the following test problem in finite dimensional Euclidean space. All

codes were compiled by MatLab and run on a P-III 667 PC under MatLab Version

6.1.

The test problem is to find x ∈ Rm+n such that

LCP x ≥ 0, Mx + q ≥ 0, 〈x, Mx + q 〉 = 0,

where possible nonzero elements of M : aij = −aji, i = 1, 2, ...,m, j = m+1, ...,m+n

are randomly generated in (0, 1), qj = −1, j = 1, ...,m and qj = 1, j = m +

1, ...,m + n.

The LCP above corresponds to the case of Example 2.4.2 with

C = Rn
+, F (x) = Mx + q.

For this LCP, Algorithm 4.2.1 may be expressed as

xk+1 = xk − γk (I + MT ) r(xk),

where γk = ‖(I + MT )r(xk)‖−2‖r(xk)‖2 and r(x) := min{x,Mx + q}.

And, Algorithm 4.2.5 may be of the form

xk+1 = xk − γ (I + M)−1r(xk),

where r(x) := min{x,Mx + q} with γ = 1.9.

Remark. Algorithm 4.2.5 also corresponds to the γ = 1.9 case of the Peaceman-

and Douglas- Rachford family of splitting methods. As far as this algorithm is con-

cerned, the γ = 1.9 choice is an empirically good one. This phenomenon has been

40
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observed and reported by He [19] who suggested to choose γ ∈ (1.5, 2) deliberately

to accelerate convergence.

The results of these implementations of Algorithm 4.2.1 and Algorithm 4.2.5 via

this LCP have been reported in the following table. The implementation procedures

invariantly started with the origin and stopped as soon as ‖r(xk)‖∞ ≤ 10−6.

Table: Numerical results of Algorithm 4.2.1 and Algorithm 4.2.5 on LCP

Dimesion Algorithm 4.2.1 Algorithm 4.2.5

(m, n) Number of Iter. CPU Time (sec.) Number of Iter. CPU Time (sec.)

(5, 10) 830 0.3300 1604 0.8300

(5, 20) 1430 0.7100 2474 2.2500

(5, 30) 1690 1.2100 4454 6.2000

(5, 40) 2531 2.3100 2627 5.5500

(5, 50) 3771 4.3400 7258 21.4700

(10, 5) 493 0.1600 1530 0.7700

(10, 10) 2919 1.2100 4877 3.3500

(10, 15) 6620 3.1300 11705 10.6100

(10, 20) 3146 1.8100 7659 8.1300

(10,25) 2856 2.0300 6146 8.5700

(10, 30) 6996 5.4400 4383 7.2000

(15, 5) 674 0.3300 1471 0.9800

(15, 10) 1634 0.8800 3027 2.6900

(15, 15) 16187 9.2300 22022 23.3400

(20, 5) 1312 0.7100 2065 1.7500

(20, 10) 2062 1.2100 5564 6.1000

(30, 5) 10155 7.1400 20255 28.0100

(30, 10) 2691 2.0900 4068 6.7066

From the table above, we can see that when the underlying matrices were of

the same sparsity structures as that of Examples 4.4.1-4.4.2, Algorithm 4.2.1 in

general needed less numbers of iterations and less CPU time than Algorithm 4.2.5.

The reasons for why are at least threefold: The first reason is that in general

Algorithm 4.2.5 needs O((m + n)3) operations per iteration whereas Algorithm

4.2.1 only needs O((m + n)2) operations per iteration. The second one is that

the stepsizes in Algorithm 4.2.5 are the same constant whereas Algorithm 4.2.1
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adopts adaptive stepsizes, which can take full advantage of information on the

current iterates. The last, perhaps more important is that Algorithm 4.2.1 can

exploit sparsity properties of the underlying matrices whereas Algorithm 4.2.5 fails

to better them. Therefore, Algorithm 4.2.1 in our test problem consumed much

less CPU time especially when the scale of the LCP above became larger.

Based on these observations, we can conclude that our proposed splitting meth-

ods may become the practical alternatives to the classical Peaceman- and Douglas-

Rachford family of splitting methods, especially for the two classes of monotone

inclusion frameworks described by Examples 4.4.1-4.4.2.
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