Mathematics and Computers in Simulation 223 (2024) 86-107

Contents lists available at ScienceDirect

Mathematics and Computers in Simulation

journal homepage: www.elsevier.com/locate/matcom

Original articles :.) |

Check for

Extended splitting methods for systems of three-operator monotone [="
inclusions with continuous operators
Yunda Dong

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, 450001, PR China

ARTICLE INFO ABSTRACT

Keywords: In this article, we propose two new splitting methods for solving systems of three-operator
Monotone inclusion monotone inclusions in real Hilbert spaces, where the first operator is continuous monotone,
Characteristic operator the second is maximal monotone and the third is maximal monotone and is linearly composed.

Uniform continuity
Splitting method
Weak convergence

These methods primarily involve evaluating the first operator and computing resolvents with
respect to the other two operators. For one method corresponding to Lipschitz continuous
operator, we give back-tracking techniques to determine step lengths. Moreover, we propose
a dual-first version of this method. For the other method, which corresponds to a uniformly
continuous operator, we develop innovative back-tracking techniques, incorporating additional
conditions to determine step lengths. The weak convergence of either method is proven using
characteristic operator techniques. Notably, either method fully decouples the third operator
from its linear composition operator. Numerical results demonstrate the effectiveness of our
proposed splitting methods, together with their special cases and variants, in solving test

problems.
1. Introduction
Let H;,, i = 1,...,n, and G be real infinite-dimensional Hilbert spaces, with usual inner product (-,-) and induced norm
[Ix|l = 4/{x, x) for each vector x. In this article, we focus on the following system of three-operator monotone inclusions
* n .
0€ Fx)+AG)+0/B(X 0% —a), i=l..n)

where F;, A;: H; 3 H; are maximal monotone operators, B : G = ¢ is a maximal monotone operator, and each Q; : H; — G is nonzero
bounded linear operator with its adjoint operator Q7, and g € G is a vector. This problem models a wide range of problems arising
from definite linear systems, linear/quadratic programming, semi-definite programming, complementarity problems, variational
inequality problems, optimal control, traffic equilibrium, image reconstruction, portfolio selection. For further details, please refer
to [3,6,14,20,22,29,32].

Recently, an extended Douglas-Rachford splitting method for solving (1) was proposed by the author [8], building upon prior
work by [9,13,25]. At each iteration, the method requires computations of the resolvent for each individual operator in the monotone
inclusion. Under the weakest possible assumptions, the author proved its weak convergence using characteristic operator techniques.
Interestingly, the proposed method includes as special cases the Douglas-Rachford splitting method for a two-operator monotone
inclusion and an equivalent version of a splitting method for convex minimization [18].

Now consider an important special case of the problem above. If n = 1, F is continuous, and B vanishes, then it reduces to

0 € F(x)+ A(x). (2)

E-mail address: ydong@zzu.edu.cn.

https://doi.org/10.1016/j.matcom.2024.03.024

Received 31 December 2022; Received in revised form 25 December 2023; Accepted 18 March 2024

Available online 4 April 2024

0378-4754/© 2024 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.

https://www.elsevier.com/locate/matcom
https://www.elsevier.com/locate/matcom
mailto:ydong@zzu.edu.cn
https://doi.org/10.1016/j.matcom.2024.03.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2024.03.024&domain=pdf
https://doi.org/10.1016/j.matcom.2024.03.024

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

In this case, Tseng’s splitting method is particularly well-suited. Choose x° € domF n domA. Choose ¢ > 0, # € (0,1), a_; > 0. At
kth iteration, find the smallest i, in @ = a;_, ', i =0, 1,..., such that x*(a) = (I + aA)"!(x* — a F(x¥)) satisfies

al| F(x*) = FGE @)l < (= p)lIx* = x*@)ll, p € ©,1). (3)
Then take a; = a;_; ', and compute 3* = x*(e;). Finally, compute
A = 5K — a F(EF) + a F(x5).

Tseng [32, Theorem 3.4] proved the method’s individual weak convergence when F is monotone and Lipschitz continuous, and F
is monotone and uniformly continuous respectively. However, to overcome its small steplength phenomenon, the author proposed
an alternative in his Ph.D. dissertation [4]. Choose x* € domF n domA. Choose ¢ € (0,1), p € (0,1) and a_; > 0. At kth iteration,
find the smallest j, in a« = a;_;#/, j =0, 1,..., such that x*(¢) = (I + aA)~}(x* — a F(x*)) satisfies

a(x* = xM@), F(M) = FeM@) < (1= pllx* = K@), ©)
Take a; = a;_,#/, and compute x* = x¥(a,). Compute in order

d* = xk — 55 — @ (F(x*) = FZF), = (xF =55, d*y/|1d 2.
Then choose 6, € (0,2] and compute

Xkl = Xk Okykdk. (5)

Notice that the condition (4) itself is originally due to [17,30,31] in the setting of monotone variational inequalities and later
extended in [4] to such monotone inclusions. Almost in the same time, Noor [27] independently proposed a conceptual method
similar to (5) but without our self-adaptive choice of «,, and he proved the method’s convergence in the finite-dimensional space.

Next, we will consider the problem (1) in the case where n =1, i.e.,

0 € F(x)+ A(x) + Q*B(Qx — q). (6)

In this scenario, the primal monotone inclusion can be transformed into the following primal-dual monotone inclusion

@=(o D) C) (") () ®

As an application of the method (5), a special case can be obtained when domF = domA = H. Choose x° € and ° € G. Choose
t € (0,1) and a_; > 0. At kth iteration, find the smallest j, in @ = a;_,#/, j =0, 1, ..., such that

K@) = I + aA)"'(x* — a(F(xY) + 0*ub)) (8)

w (@) = I + B~ @k + a(0x* - g)) 9
satisfies in order

a(xk = xk(@), F(x*) = FeE @) < (1= p)(lIx* = @l + [l = ub @), (10)
Take a; = a;_,#, and compute 3¢ = x*(a), i#i* = u¥(a). Take

db = xk - % — a (F(Y) - F(EY)) - 0, 0"k -),

d* = uk —a* + q 0(x* - 75,

(xk — 55, d5y + (uk - ak, d¥)

K2 X2
ldXl> + Nd sl

Yk =

Then choose 6, € (0,2] and compute

k+1

=k — oy, Wt

=u _Gkka,f' an

The problem (6) above reminds us of a splitting method recently proposed by Johnstone and Eckstein [23] (JE splitting for
short), which can be used to solve it. Consider the following monotone inclusion of finding a z € H such that

0 € GIT\G z + G3T,G,z + Txz,

where T} : G, 3 G,, T, : G, 3 G, are maximal monotone, and G, G, are Hilbert spaces, and T; : H — H is monotone and Lipschitz
continuous, G, : H - G, and G, : H — G, are nonzero bounded linear. Their novel splitting method is given as follows. Choose
z' € H, w} € G, w} € Gy, wy € H. Choose p3 >0,y >0, 4> 0. For i = 1,2, choose p,; >0 and compute

X =T+ pT)NGZ" + pyl), V= p G2k + py o = x).
Choose pj ;. to be the smallest element of p;,_;{1,0.5,0.5%,...} such that

Pax AT 25 — k> < (Tyz% — wh, Ty(2F = ps (T3 2F — wh)) — wk) . (12)

87

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

Compute in order

k _ k k k k k
xy =2z —p3(T3z° —wf), y3 =T3x3,
k
ul

" =xf.‘—G,-xf‘, i=1,2, o~ =GTy’l‘+G;y'2‘+y§,

If 7 = ekl + uf 12 + 7~ [|o¥]|* = 0, then stop. Otherwise, choose §; € [0.01,1.99] and compute

3
-1 k k k k k k = k _k
@ =1 ﬂkmaX{O,(z) (k) 4 (k) = Y izl(xi,yi)},

= gk g ok,

Wit = wf —auf, i =1,2, Wit = -Giuit! - Gkt

At first glance, the method (11) has several similarities to JE splitting: At each iteration, the main costs are operator’s evaluations
of (Lipschitz) continuous operator, computations of each resolvent of other two. However, by comparing their individual ways of
choosing steplengths, we find that the corresponding condition (12) in JE splitting has a different property from the one (10). The
most striking feature that impresses us deeply is that the former merely requires operator’s evaluations of continuous operator,
whereas the latter requires operator evaluations of continuous operator and two resolvent computations. Thus, the condition (12)
in JE splitting can considerably reduce computations in determining the associated steplengths.

Motivated by these observations, in this article, we aim to develop new splitting methods, where each involved steplength
condition is similar to (10), but, as in JE splitting, no longer requires the resolvent of B~!. Assuming that each F, is further
continuous, the key ingredients of new methods can be stated as follows. Choose x* € H and 4° € G. Choose ¢ € (0,1) and
a;_1 >0 (i =1,...,n). At kth iteration, for the current primal-dual iterate (x*,u¥), find the smallest j, in @ = a,_,#/, j =0,1,..., such
that

xf(a) = I+ aA) ™ (xf = ay(F(x) + O} ub))
satisfies

ay{xf = xj (@), F(xf) = Fi(x{ @) < (= pllxf = xf (el 13)
for i =1,...,n. Take a;; = a;,_;#/, and compute ¥ = x¥(a; ;). Choose §;, > 0 and find #* such that

(Bl + BT @) 3 pu + Y O —q. (14)

Finally, based on the information above, we obtain the new primal-dual iterate (x**!,u**!) in some cheap but different ways; see
Algorithms 2.1 and 2.2 below for more details.

Clearly, when we compare the condition (13) (in the n = 1 case) with the one (10), we have removed resolvent computations with
respect to B~!. This design is particularly useful when such resolvent is difficult to evaluate, as shown in the second test problem
for numerical demonstrations. Additionally, our proposed method is ideally suited for the case, where the operator is skew-adjoint
(in part). Notice that the intermediate dual point in (14) (in the n = 1 case) is obviously different and can take full advantage of the
latest information, when compared to the one in (9). In this sense, our proposed splitting methods are desirable and are not direct
applications of the existing method (5).

As shown below, if each F; is Lipschitz continuous, then we are able to use (13) to prove weak convergence of Algorithm 2.1.
Impressively, if each F; is merely assumed to be uniformly continuous but not necessarily Lipschitz continuous, we have to resort
to additional conditions

llxf = xf (@) = a(F(xf) = @I < v(xf = xf (@), xf = x (@) = a(F(xf) = F(xf (@)

fori =1,...,n, where ¢ > 1 is any given positive number, to prove weak convergence of the corresponding Algorithm 2.2. To the
best of our knowledge, this is a new idea of combining this group of conditions with (13) (further require « « q;) to determine
steplengths in some algorithm. In particular, this new type of conditions still allows for larger steplengths than the condition (3);
see Lemma 4.1 below for further explanations.

The rest of this article is organized as follows. In Section 2, we fully state our proposed splitting methods in Hilbert spaces in
the setting of the monotone inclusions (1) above. In Section 3 and Section 4, under the weakest possible conditions, with the help
of characteristic operator techniques [8,11,12,35], by assuming Lipschitz continuity and uniform continuity of the first operator,
we prove individual weak convergence of the generated primal sequence of the iterates, respectively. In Section 5, we present the
dual-first version of Algorithm 2.1. In Section 6 and Section 7, we discuss some other aspects of the proposed methods. In Section 8,
we conducted numerical experiments to confirm the effectiveness of our proposed splitting methods, together with their special cases
and variants, in solving our two test problems, when compared with other state-of-the-art algorithms. In Section 9, we conclude
this article with some remarks. In Appendix A, we provide some useful concepts and preliminary results.

Throughout this article, we will agree that the notation (x,a) € A and the notation x € domA C H, a € A(x) have the same
meaning, where A : H = H is maximal monotone and domA = {x € H : A(x) # @} is its effective domain. We will denote by 6.
the indicator function (cf. [8]) of a nonempty set C.

88

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

2. Methods

In this section, we describe our proposed splitting method for systems of monotone inclusions (1) in details.
The method’s design is based on the following

Assumption 2.1. For the system of monotone inclusions (1), we assume that: (i) For i = 1,...,n, each F, is continuous. (ii) There
exists an / € {0,1,...,n—1} such that each of F\, ..., F, is skew-adjoint, linear operator. (iii) There exist x{ €Hy, .., x; EH, U €G
such that they solve

0€ F(x)+ A;(x)+Qfu, i=1,....n, (15)
0€-Y" Opx +q+B" @ (16)
Furthermore, ¢ # domF;, # # domA; for i =1,...,n, # # domB. (iv) Every domF; n domA4; is closed for i =1, ..., n.
First of all, we would like to follow [8, Sect. 3] to explain Assumption 2.1 a bit. For example, we consider
min f(x) + f(x) + g(0x — q),

where f,f : R" > R, g : R™ — R are closed, proper convex functions and f is further continuously differentiable, Q is an m x n
matrix, with its transpose Q7, and ¢ € R™. If there exists an x such that

x eri domf nri domf, QOx-—gq eridomg, 17
then its optimality condition is
0€ V/(x)+af(x)+Q"0g(0x - g),

where ri stands for the relative interior, Vf and df stand for the gradient and subdifferential of f and f respectively; see [28] for
more details. If g is taken to be the indicator function 810} then (17) reduces to

x €ridomVfnridomdf, Ox—q=0 (18)
because the set ri domg becomes {0}, and we further have

0 € V/(x)+0/(x)+ Q" 95(0)(Qx - q).
Of course, we may replace (18) by

x € int domVf nint domdf, QOx—gq=0,

where int stands for the interior. This is stronger but more convenient.
For the associated steplengths of our proposed splitting algorithms below, at kth iteration, we adopt the following Armijo-like
way. For i =1+1,...,n, choose t € (0,1). We set

. j=-1,0,1,..., if F, is strongly monotone,
@ =t y L &Y (19)
’ j=0,1,..., otherwise.
2.1. F, is Lipschitz continuous
In the case of F; being Lipschitz continuous, we give
Algorithm 2.1. Our proposed splitting algorithm in Lipschitz continuity case
Step 0. For i =1,...,n, choose x? € M;, u’ € G. Choose a;,_1>0,pe(0,1). Set k :=0.
Step 1. For i = 1,...,1, choose appropriate «;;, > 0. For i =/ +1,...,n, find the smallest j, in (19) such that
xKa) = I + oAD' F = o (Fi(xF) + Q7 uby)
satisfies
o (xf = xf (@), Fi(x) = F(xf @) < (1 = p)llxf = xf@ll®. (20)
Take a;; = a;,_ /¥, and compute
J'cf‘ = xf(a,-yk). (21)
Choose g, > 0 via (29) below and find @* such that
(Bd + B™") @) > pu* +27=1Q,->‘cf.‘ -q. (22)

If ¥ =xk, i=1,....n, and @ = u¥, then stop. Otherwise go to Step 2.

89

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

Step 2. For i =1,...,n, compute
dy = ol (xf = 3 = (F(x) = F(E)) - 0] Wk —a), (23)
d* = gk - "), (24)
i =% dy) + k-, d)

T Ik 12 + a2

Yk = (25)

Then choose 6, € (0,2] and the new iterates are given by

xf_<+1 - xff - ekykdi‘i, i=1,....n (26)
Wt =k — 0,y dk. 27
Set k := k+ 1, and go to Step 1.

Notice that, in the case of F; being strongly monotone, it follows from (20) that

@ Ixk = xf@)l* < A= p)lixf = xF@)II* = a < =p)/u. (28)
Thus, the sequence {«;,} must be uniformly bounded above as desired.
As to f,, we set f = Y f;, and choose
2e - +a 11011
2Q2-¢e)a;y
2pe - +a, |0iIP

Bk > , O<e<2, i=1,...,1,
(29)

Bix = , 0<e<2p, otherwise,

for i =1,...,n. These two relations are obtained from

L+ B — \/(1 = ;B i) + ai2,k||Q1||2 >, 0

P @b =)0 = B + @RI > e,

respectively.
2.2. F, is uniformly continuous
In the case of F; being uniformly continuous, we give

Algorithm 2.2. Our proposed splitting algorithm in uniform continuity case
Step 0. Let Q; = domF; ndomA; for i =1, ...,n. Choose x? € ©; and u° € G. Choose ¢ € (0, 1) and a_; > 0. Set k :=0.
Step 1. Find the smallest j, in (19) such that
X (@) = (I +aA)™ (xf = a(F(x}) + Q[ub))
satisfies xff(a) € Q, and (38)-(39) below. Take «; = a;_,#/, and compute
y'cf‘:xf‘(ak), i=1,...,n (31)
Choose f, via (40) below and find #* such that
—1\ 7k k n ~k
(I +B7") @) 2 pt + Y, 0% —q. (32)

If ¥ =x¥ i=1,..,n, and @* = u*, then stop. Otherwise go to Step 2.
Step 2. Fori=1,...,n, take

d* =xF - 5F - (F() - Fi(E5) - 07k —), (33)

d* = a Bk - @), 34
ZLI(X:‘ -)'cff, dky+ (uk — ik, dk)

Tk = (35)
2ol 112+ lla >
Then choose 9, € (0,2] and the new iterates are given by
Xt = Polxf = Opdf), i=1,....n, (36)
uktl =k — kakdlf. (37)

Set k :=k+ 1, and go to Step 1.

90

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

First of all, we discuss how to choose «, > 0 in Step 1 of Algorithm 2.2. We give the following conditions
alxf = x{(@), F(x) = FiGxf @) < (1 = plixf = xF @], (38)
llxf = xf (@) = a(F,(xf) = Fi(xf @D < 7(xf = xf (@), xf = xf (@) = a(Fi(x}) = F(xf (@) (39)

for i = 1,...,n, where = > 1 is any given positive number. Importantly, this is still a new idea of making use of this group of
conditions to determine steplengths, although its root is in [5]. By the way, the inequality (38) always holds whenever such F; is
skew-adjoint.

As to f;, we set f, = 3", §;, and choose

2e -2 + a0

> , O<e<?2, i=1,...,1,
SR) l (40)
2pe -2 +a2lQ, I .
ﬁi,k > W, 0<e< 2p, OtherWISe,
for i =1,...,n. These two relations are obtained from
L+ a g — \/(1 — i) + al%”QiIlz > g, (1)

Pt iy =)0 = P + QIR 2 €,

respectively. Please note that ¢, here is not «; , in (30) there. We will discuss a practical way of choosing g, for both Algorithms 2.1
and 2.2 in Section 7 below.

Interestingly, if B vanishes and n = 1, then Algorithm 2.2 coincides well with the method of [4, Algorithm 4.2.4].

Obviously, a nice feature of Algorithms 2.1 and 2.2 is that either decouples B from its linear composition operator. This feature
is similar to that of [8, Algorithm 3.1], whose iterative formulae can be stated as follows. At kth iteration, for xf.‘ eH, af.‘ € A,-(xf.‘),
i=1,...,n x’;H € ¢, u* € G. Compute

A=k -k =D 0k +a)/8,
(o] + F)EN) = apx¥ — aF — 01, (42)

@1 1+ B)EE,) D, x

—k
n+1+u .

Then, choose 6 € (0,2), calculate

. n+l k_ k2 o /=k n <k k_ -k
b=l = ZHP (xR + g, uF -,
. ml ke k2 L sk n <k 2
o =0 I =P+, - D 0+l
Vi =00/ Py

Finally, for i = 1,...,n, compute in order

(a; 1 + A,-)(xf.‘“) E) ot,-xf.C + a,'.c - yk(xl'.C -)'cf),

k+1 k k —k
anﬂxn-tl il C S yk(xn+1 - xn+1)’
—- n -

W =~y (x5+1 - Zi:lQ"Xf +4),

to get the new iterates. As proved in [8], iff a; >0,i=1,...,n+ 1, and
n 2
B> Y O/ (e + 1/ (e,

then the sequence {(x’l‘, ,x’;)} generated by the method of [8, Algorithm 3.1] weakly converges to an element of the solution set
of (1).

However, Algorithms 2.1 and 2.2 differ widely from this method above because neither requires computing the resolvent of
each F; as in (42) at each iteration, but instead, they require appropriate steplength selection. This can be beneficial for numerical
performance, especially when the resolvent of each F; is difficult or impossible to compute exactly. Additionally, for the method
of [8, Algorithm 3.1], it remains in force even F; in (42) is replaced by (possibly multi-valued) maximal monotone operator 4;.

In essence, Algorithms 2.1 and 2.2 are extensions of the method of [4, Algorithm 4.2.4], while the method of [8, Algorithm 3.1]
is an extended DR splitting method.

3. Weak convergence in Lipschitz continuity case

In this section, we analyze convergence properties of the primal sequence and the dual sequence generated by Algorithm 2.1.
Under the weakest possible assumptions, we prove the former’s weak convergence to a solution of the problem (1) above.

Theorem 3.1. Let {xf.‘}(i = 1,...,n), {u¥} be the sequences generated by Algorithm 2.1. If Assumption 2.1 holds and F, is Lipschitz
continuous for i = 1,...,n, each a; is well-defined and can be determined within finite trials, and each sequence {«; ,} has positive lower

and upper bounds.

91

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

Proof. The cases of i =1,...,1. Obvious.
The cases of i =1+ 1,...,n. Since F; is k;-Lipschitz continuous and monotone, we have
0 < a(xf — x¥(a;), Fi(x}) = Fi(xF (@) < o, [|xF = xF (@)
If o; takes the form of a;,_#/ via (20), then the following relation
@K = K < 1=p

will hold for some sufficiently large j. This indicates that ¢; is well-defined and can be determined within finite trials.

In view of (19), the chosen step length falls into two cases. One is that a; takes a;;_;#/* for j, = —1 or j, = 0. In such case, it
is not difficult (but somewhat complicated) to get its positive lower bound. The other is that «; , takes a;,_;#/* for some j; > 1. In
such case, a;,1~! does not satisfy (20), i.e.,

et (o = xf (@t ™), B = FiGxef(aget™)) > (1= plixf = xf (a1
Combining this with the Cauchy-Schwarz inequality and F/s Lipschitz continuity yields
@y > o =1 =pt/x;,

where «; is F/s Lipschitz constant, i.e., {;,} has a positive lower bound. Of course, such sequence also has an upper bound from
(19) and (28). O

Denote by
X1 dxl
=\ d=| " 1.
w . | d (43)
u d

Theorem 3.2. In the setting of Theorem 3.1, there exists some positive number such that
! = w1 < llw* = w*|? - 6,2 = 67 lw* - |2,

where w is defined in (43). Furthermore, if Y., 6,(2 — ;) = +oo, the involved primal sequence is weakly convergent.

Proof. Fori=1,...,n, it follows from (21) that

A 3 ol (xF - 2 - F(xb) - o7k, (44)
which, together with (15)

A;(x) 3 —F(x)) - Qju’,
and monotonicity of each 4; , implies

0< (X = xf, 0} (f = X)) = (F(x) = FG) = Qf @ —u)), i=1,....n.
Adding these relations to the following (due to each F;’s monotonicity)

0<(ZK—xf, FEH - FGH), i=1,...,n
yields

0 < (5 = x; a (xf = %) = (F(x) = Fi(E) = O —u")),
ie, fori=1,...,n, we have

0 < (X} = x, ap) (xf =) = (F(x) =) = (3 = 7, Q] " = u"). (45)
On the other hand, it follows from (22) that

B@) 3 b -+ Y 0 g, (46)
which, together with

B'w)3s Y 0x-q
and monotonicity of B~!, implies

0< @ —u, pt =)+ Y 0 - X))

= (@ -, fF = 7)) + @ —u, Y 0 - X))

92

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

=@ -, =)+ Y (@ —u), 5 - x7).
Thus, by this relation and (45), we can get
- @k =5 = (FGH - FE) = Y (7 =7, @ =) + @ - u, pw i)
=X}y ol (xf = x) = (Fi(xP) = FiG&) = 0f wh =)y + (@ —u*, i —")).
By using % — x* = x —x* — (x — X) and §;, :=)" B, we can further get
Z" (xf = x}, a) (e = 5 = (F(x) = F(&9) - QF @k —d)) + (u —u*, p(u* — b))
> 3 (k== ol - 2 - (R - FE) - 0fwh —ab) + (bf -7, gt — 7))
= 2 ot (I = =E02 = e (xf = =F, R - FGED))
= POk = 5wk)+ Bl — 7 (47)
Since we have assumed that, for i = 1, .../, F; is further skew-adjoint, we have
(xf = X, Fi(xH) = Fi(&) =
Astoi=1I+1,...,n, we adopt (20) to get
llxf = %517 = @ dxf = xf0 B = FiGD) 2 pllxf = 317

Therefore, (47) can be divided into two parts. One is that

! _ - - _ _
Xy (1 = 1P = 0y = 50wk =)+l =). (48)
The other is that
n
T (it pll = 512 = (@, = 550w =) + k= 1) (49)

Then, combining the sum of these two parts with (47), Lemma A5 and the conditions (29) and Theorem 3.1 yields
(w* — w*, d¥y > (w* — ok, d¥y > 0.

So, it follows from this relation, (26) and (27) that

” wk+l —w* ||2

= ||wk —w* - Hkkak”z
= llwh = w* > = 26,7 (w* — w*, a*) + 6; v la*|1?
<l = w*? = 20,7, (wk — @, d*) + 07 v 1d* 1%
Combining this with (25), i.e.,

v = (wk — @k, d*y/(1d|)?

yields
”wk+1 _ w*”2
< lwk = w*|* = 20,7, (w* — o dk>+9,€yk||dk||2 50)
= [lwk = w*|? = 0,2 = 0,) ((w — 0¥, d*)/|1d* 1) (w* — ¥, a*)

= [lw* — w*|* = 0,2 = Oy, (W — ", d*).
It remains to prove that the sequence {y,} has a positive lower bound. In fact, it follows from (25) that
T (k- Rk) (b -, db)
Zimilld 112+ lla >

Yk =

In view of (23) and (24), the denominator is bounded above by

(X @+ k2 + 10 P + 82) (X I = =07 + I = 1)
provided that F; is k;-Lipschitz continuous. As to the numerator, by Lemma A5, (29) and (30), we know that (48) is bounded below
by

- 1 __ ! = _
s Z, e (I = SEP b = 0P) 2 Jear (X, I = <P + 1 - a2,
where @; (i =1, ...,1) stands for an upper bound of the sequence {a). Similarly, (49) is further bounded below by

1§ 12 | 12 k _ k2
3 ik e (I = =P =) 2 Seart (X0, lxk = 5607 + = Dl = a2

93

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

where @; (i = [+ 1,...,n) stands for an upper bound of the sequence {«;,} and its existence follows from Theorem 3.1. So, the
numerator must be bounded below by

(X k= SR -) 1)

2 max{a;}
where max{@;} = max{a; : i = 1,...,n}. Thus, it can be easily seen that the sequence {y, } has a positive lower bound indeed.
Since the numerator in y, is equal to (w* — @*, d*) and is bounded below by (51), we have

k_ —k gk £ (n k_ k2 k_ -k 2) _ £ Kk —ky2
w* —w*, d*y > ———— I o | R |7y = — || — 20"
()2 gy (X e = P+ =P) = e I

Thus, it follows from (50) that there exists some 7 > 0 such that
! — w*|? < |k — w*||* - 6,2 - 6,)7 lw* — ||,

So, we can conclude that: (a) The limit of the sequence {|lw* — w*||} exists and {w*} is bounded in norm; (b) The sequence
{6,(2—6,)||w* — w*||?} converges to zero. Combining this with Y, 0,(2—6,) = +co yields that there must exist some subsequence of
{|lw* —wk||} converging to zero. For notational simplicity, without loss of generality, we may assume that the sequence {||w* — ||}
itself converges to zero. Since each F; is Lipschitz continuous, it can be easily seen that

k_ gk S0 (52)

(i) {x¥}, {F;(x},i=1,...,n, {u*} are bounded in norm. (53)

(i) xf.‘—)'cf -0,i=1,....n, u“"—u
Next, we will make use of Lemma A3 to prove the remaining part. To this end, we follow the definition of the set T to get

A () + Fi (<) + otk

A, (x5 + F,(x5) + 0k

TGN F(x), i) = xk — 5k

Bl@) - Y 0,55 +q
Combining this with (44) and (46) yields

—lok _ ky _ ek _ ik
al,k(xl xl) Ql(u)

—1 - -
otn’k(x]; - xﬁ) — Q:(uk — k)

TG FN.a 3 xk -5k : (54)
x’; -)'cﬁ
Bk — i)

To invoke Lemma A3, we first consider all the terms on the right-hand side of (54). In fact, it follows from boundedness of ai_kl
(=1,....n), B, QF (i = 1,...,n) and (52) that each term strongly converges to zero. On the other hand, according to (53), there
exists one weak cluster point such that

xk/_\xoo’ F(xkl')—\F(xm), ukj_\uoo’

where the notation — stands for weak convergence. Combining this with (52) yields

g x® Feh) = Fe), b = u™.

So, if we denote F(x) by z, by Lemma A3, we can conclude that the cluster point (x®, z®,u®) satisfies 0 € T'(x, z,u), establishing
the desired result. Furthermore, the primal cluster point x* solves problem (1). To prove the uniqueness of the weak cluster point,
we adopt a standard approach detailed in [9,29]. [

Remark 3.1. In analyzing the weak convergence of the primal sequence generated by Algorithm 2.1 in real Hilbert spaces, we
leverage Lemmas Al and A3. Our approach is more self-contained and less convoluted, and can be considered an enhancement
of those presented in [7,12]. This is due to the modular proof that results from the introduction of the characteristic operator
in Lemma A1, as discussed in subsequent works such as [11,35]. The basic idea originates from [12] and the 2017 draft of [8],
independently.

Finally, we note that Algorithm 2.1 is related to the proximal point algorithm [26,29]. Specifically, if we set n =1, §, = 1, and F
and B to be zero, the main iterative formula in Algorithm 2.1 reduces to (I + &, A)(x**1) > x*, k =0, 1, ..., which happens to be the
proximal point algorithm. Thus, as shown in [16], the sequence generated by Algorithm 2.1 may not converge strongly in general.

94

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

4. Weak convergence in uniform continuity case

In this section, we analyze convergence properties of the primal sequence and the dual sequence generated by Algorithm 2.2.
Under the weakest possible assumptions, we prove the former’s weak convergence to a solution of the problem (1) above.
First of all, we make the following three assumptions, which are standard in the literature [19,32].

Assumption 4.1. (i) For any x* € domA4, and ¥ € dom A,, i =1, ..., n, if the sequences {x¥} and {y¥} converge weakly, respectively,
and ||xk — y¥|| - 0, then || F;(x¥) = F;(¥)|| - 0. (ii) x is always in domA4, fori=1,....n.

Be aware that the first item is slightly different from the one in [32] because we add the assumption on weak convergence of
the sequence {xff} and is the same as the one in [19]. It is certainly implied by Lipschitz continuity assumption. As to the second
item, it holds provided that domA; = H,.

Lemma 4.1. Assume that A: H = H is maximal monotone, and F : H — H is uniformly continuous and monotone. Assume that x €
domA and (x,u) is not a solution of 0 € F(x) + A(x) + Q*u. Denote by
x(@) = (I +aA)~ ! (x — a(F(x) + Q*w)).

For any given @ > 0 and t € (0,1) and © > 1, it needs finite trials to find out the smallest j such that the corresponding a = G&t/,
j=-1,0,1,..., satisfies

llx — x(a) = a(F(x) = F(x(@)||* < 7(x = x(a), x = x(@) = a(F(x) = F(x(a)))). (55)

Proof. Assume that the assertion is not valid. Then for every a = &#/, j = —1,0, 1, ..., we always have
llx = x(@) = a(F(x) = Fx@)* > 7{x = x(a), x — x(a) — a(F(x) = F(x(a)))).

So, we further have

2
o pylx=x@l
(12
<(- 2><X'T"("), F(x) = F(x(@) + | F(x) = F(x(a)|I?
<lz- 2'@ IF(x) = Fee(@)l| + | F(x) = F(x(a)]?. (56)

Since a — 0, it follows from (A.2) and uniform continuity of F that F(x) — F(x(a)) = 0. Meanwhile, (A.3) tells us that a~!||x — x(a)||
must be bounded. Consequently, either term on the right-hand side of (56) tends to zero, so does the term on the left-hand side.
This is to say that a~!||x —x(a)|| — 0 as a — 0. On the other hand, we have assumed that x is not a solution of 0 € F(x)+ A(x)+ Q*u.
Then, in view of (A.5), a~!||x — x(a)|| has a positive lower bound. So, this is a contradiction. []
Lemma 4.2. Let p € (0,1) is a prescribed real number. In the setting of Lemma 4.1, any positive number satisfying

a||F(x) = F(x(a)l < (1 = p)llx — x(a)|
must satisfy (55) and

a(x - x(a), F(x) = F(x(a))) < (1 = p)llx - x(a)|*.
Proof. Elementary. []

Theorem 4.1. If Assumption 4.1 holds, then «, in Algorithm 2.2 is well-defined and can be determined within finite trials, and the resulting
sequence {a,} has an upper bound a.
Proof. In view of (19), we have a = a;_,#/. Assume that for all j the conditions (38) always fail to hold
alxf = x}(@), F(x) = Fi(x @) > (1= p)lixf = xf @)]?
fori=1+1,...,n Thus, we can get

xf.‘ - x;‘(a)

IF, () — Feek @) > (————,
llxk = xk)|

F(x) = F(x{ (@) > (1 = p)a”[Ix} = xf@).
It follows from Lemma A2 that
limi(1)1f o lx¥ = x¥ (@)l = min{[lwll : w € F(x) + 4,65 + 0u).
a—
Since xl’.‘ is not a solution to the problem, the closed convex set E(xf.‘) + A,-(xf.‘) + quk will not include the origin. So, we can get

liminf a~'||x* = x*(a)|| > 0.
ﬂ—>0 1 1

95

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

Combining this with uniform continuity of F; yields a contraction. This implies that, after finite trials, there exists the smallest j,
such that a;_,t/x satisfies (38).
Next, we consider

a=a_t, jej+{01,..}.

Lemma 4.1 tells us that, after finite trials, there exists the smallest j, such that j, € j, +{0,1,...} and «,_,#/ satisfies (39).
In conclusion, such steplength «, is well-defined and can be determined with finite trials.
Certainly, in the cases of each F; (i =1+ 1, ..., n) being strongly monotone, it follows from (38) that

apg lIxf = xf @I < A = plixf =xf @I = a<-p/ug.

Thus, the sequence {a,} must be uniformly bounded above as desired. []

Theorem 4.2. Let {y,} be the sequence generated by Algorithm 2.2. If the sequence { B, } is bounded above, then there exists some § such
that

Proof. In this proof, we make use of } to stand for). Consider
Z(xf‘ -)'cf.‘,di‘)+ (uk =k, d¥)
Yk = .
TlldE 12 + 145112

It follows from (39) and monotonicity of F; that
llxf = % = @ (Fyxf) = FGEDIP < o(xf = 5 x = X = o (Fi(x) = KGO < el = 5511%
Thus, we get
X112 = llxf = xf = a (Fi(xf) = F(E) = 0, 0f ¥ —)|
<A+ oI Ix = X = (F(xf) = GO + [l = a |1%)
< A+ a1Q I lxf = %17 + [l — &),
a1 = o 211" -).
So, the denominator Y, [|d¥ || + ||d¥||?> can be bounded above by
2 2 k _ <k2 k _ k2
{2’%{1 + o 1O }(TZIIX,- =X/ 117+ nllu® —a® %)
+ap Bl —a¥||?
2 2 2452 k _ <k)2 k _ ky2
S(IHSII%{I +a 017} + akﬂk)(TZIIXi =% 17+ (n+ Dllu” —a*|17)
2 2 22 k _ <k2 k _ k2
<(max (1+aZ10,1%) + g (e +n+ DOt = 51 + 1 = a1,
As to the numerator,
2 (I = =P = apedxf = %F, F(x) = EGED))
= Y Ok — &),k — kY + Y a By Nl — k)P (57)
Since we have assumed that, for i = 1, .../, F; is further skew-adjoint, we have
k _ <k k Skyy
(x[- X Fi(xi) — Fi(x,-))=0.
Astoi=1[1+1,...,n, we adopted (38) to get
llxf = XFI? = a (xf = 55, Fi(x) = Fi(xD) 2 pllxf = =FI1%
Therefore, (57) can be bounded below by the sum of two parts. One is that
1
z,.:l (l1x¥ = 2FI? — Qi (xF = 25), b —) + e I — %) . (58)
The other is that
n
Do (pllxf = 1P = (0, = %), b = @) + Bl — 1)

Meanwhile, in view of Lemma A5, (40) and (41), they are bounded below by

1 Pk _skp2 k_ k2
36 (Xl = =07 + -)

96

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

and

1 n k _ <kj2 k _ k2

5 (X I = SEI2 + lk — a4y
respectively. So, the numerator must be further bounded below by

1 - _

5 e (Dlek = =112 + = a1 (59)
Thus, it can be easily seen that the sequence {y, } has a positive lower bound indeed, i.e.,

E 1 1
2 max,qc, {1+ @2Q)12) + a2p? THn+1

Yk 2

Denote by

. E 1 1
Yr=z — s
2 max ., {1+ a%|Q;|?} +a%p? t+n+1

where f is an upper bound of the sequence {f,}, which is well-defined due to boundedness of {a,}. Then the desired result
follows. []

Denote by
x.l %
=1, d=| "1 60
w . d, (60)
d

Theorem 4.3. If Assumption 4.1 holds and
+
D 02 = 0) = +oo, 61)

then the involved primal sequence generated by Algorithm 2.2 is weakly convergent.

Proof. For simplicity, we will use Y, to stand for Z;;l. For i =1,...,n, it follows from (31) that
A 3 o (xf = 3 = F(xf) - Ok, (62)
which, together with (15), i.e., A;(x}) 2 —F;(x}) — Qfu* and u A -monotonicity of each A; and Lemma A4, implies
(xf =l (o = 5 = (B = FGE)) = (Qu(xf = x)).u —u*)
> (xf = 5 (xf = 5 = (RO = FEO) + G, + ma IE] =12 (63)
On the other hand, it follows from (32) that
B™\@) 3 -+ Y 0 - g, (64)
which, together with B~!(u*) 3 ¥, 0;x — ¢ and monotonicity of B!, implies
0 < (@ —u", Bk =)+ YO, — X)) = (@ — ", f =) + (Y 0, - x),d —).
Therefore
(W =", Bk = @)+ (Y 0K = x), @ —u*) > By lluk — a2, (65)
Consider
= (X0 = x)uk =) + (Y0 - X d —u)
=— Y (= —x7, Qrk - 7))
== D xf =X OpWh — @) + Y (xk - xF, O W — b)),
Thus, by adding (65) to (63), we can get
2k = o o = 5 = (R = F(xh) - 07w — b))
+ (W* =, B * — b))
> Yk =5 = 3 = () = B - 0w =)
+ Bl = a7+ Y (g, + pa) IS = 117
= Y (I = P - a(xf - 5, B = Fieh)
= DUO Nk = =), ub =) + Bllut — @I+ Y (g, + a)IEE = X711,

97

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107
which, together with a; >0 and g, = X ;,, yields
Dk = b = 7 - g (Fi(x) — Fi(E9) — 0, 0F wh —)
+ (W —ut, q p Wt —)
2 Y (Ixf = 5FIP = a (xf = xf, G = FGED))
= D Qe — =), W — @) + Y o Byt = @+ Y g, + g IFE = XTI
Thus, in view of discussions from (57) to (59),
D (Ixf = =EIP = g (of = xf B = FGEDY) = DandQuxf = X b =) + 3 ey Byl — |2
1 - _
> e (Pl = =112 + -
These relations show that
_ - 1 - - .
(= w*, d¥) > (= ¥, d) + Yalup, + up I = 5717 2 gellid = @FIP + Y g, + paIIEf = X117
So, according to this relation, (36) and (37), we get

” wk+1 —w* ”2

< Nk = w* = O d |
= |k — w*|? = 20,7, (wk — w*, d*) + 02 2 la* |2
<Nk = w*I? = 20,7 (wk = @, d¥)+ 07 2 1d5 12 = 20,7 Y (g, + pa I = X112,

where the first inequality follows from non-expansiveness of projection operator. Combining this with (35), i.e., v, = (w* —
@k, d*)/l|ak||? yields

” wk+1 —w* ”2

<Nk = w2 = 0,2 = 6) ((w* — @k, a*)/11d¥|) (w* = ¥, d*) = 20,7, Y ey (g, + g IIEE = X711
= llw* = w* |2 = 0,2 =)y (wk — ¥, d*) = 20,7 Y oy (g, + g IIEE = x|
<l - w*|I? - 6,2 - '9k)}’k%8||wk - @k|* - 29k7’kzak(/4F, + /4,4,)”3_(,{(- X?”z-

So, it follows from Theorem 4.2 that

L1 _ N -
k! = | <k = w P = 0,2 = 07 ellwt — @ 7 = 20,7 Yok, + ua xS =]I (66)

We can conclude that: (a) The limit of the sequence {||w* —w*||} exists and {w*} is bounded in norm; (b) The condition (61) implies
that {||w* — @*||} has some subsequence, say {||w* — @"/||}, which converges to zero. It can be easily seen that

ki —gki - 0; (67)

k k;
(i) xl.’—)'c,.’ —=0,i=1,....n, u —1i

(i) {x/’.cf Li=1,...,n, {4~} are bounded in norm, (68)

It follows from (68) that {(xf.cj ,u¥i)} has some subsequence that converges weakly. In addition, ¥, is bounded as well. Without loss
of generality, we assume that

kj o k; o
x5 = x®, = u®, ¥, > U

Meanwhile, in view of (67), we also have

<k

K~ x> gk

N Tha
Next, we will make use of Lemma A3 to prove the remaining part. To this end, we follow the definition of the set T to get

AL + F () + 0k

A, (x5 + F, (x5 + Qriat
T, F(x%),d) o xk— %

k -k
xn — X

n
B7l@) - Y 0%k +4

98

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107
The inclusion relation above is also true for k s

k; k;
A E D)+ Fi(x)) + Qras

k; k;
A& + Fy(x,)) + OFaki

TN, F(xh),ab) o X -5

B l(@"i) - zyzlg,x,.kf +q
Combining this with (62) and (64) yields

kj kj
-1 i _ 2Ny _ ki _ ik
ockj(x1)= O W =it

k; k:
-1 = k, _ -k
a7 () = %) = Qs)

TN, F(xh),ab) 5 ki _k . (69)

Bl — i)
To invoke Lemma A3, we first consider all the terms on the right-hand side of (69).

Case 1. ay, > 0. In this case, we certainly have
ki _k; ki _k
Jo_ % -1 Jo_ N
> 0,a,>0, x7-%x" >0 = % (x;" =x,7)—>0.

Case 2. a, = 0. Note that our choice of @, implies that (38) and (39) fail to hold simultaneously for &k, = t_lakj, if k ; is large
enough. Thus, we get either

k k; k k; k K,

A=plx;” =x" @)I? <@ (x;" = x;" @), Fi(x;”) = F(x;' @)
or

k k; k; k ki k ko k k; k;
llx;” = x,-'(&kj) - &kj(F(x,-') - l""(xl-j(alkj)))ll2 >7{x;’ - x,-j(ék/), x) = X,—'(&kj) - &k/(F(x,-') - F(x,-'(&kj))»-
Denote by ¢(a) = a™! ||xf.€’ - xf’ (a)||. By making use of Cauchy-Schwarz inequality, we can further get
k; k;

1-p (pz(&k/.) < (p(&kj)llﬂ(xi’) - F,-(Xi’(&kj))ll

and
- kj ki = kj kj o 2 2~
17 = 2le@ DIF(x;") = Fx;” @ DI+ 1FG™) = FOGeZ @ D7 > (7= Do (@),

respectively. Note that the discussion of the latter’s inequality is similar to that of (56). In either subcase, we confirm that
. . k; k; . . i
(p((ikj) — 0 as @, = 0, since (p(&kj) is bounded and Fi(x,‘/) — Fi(xi/ (&kj)) — 0 (the latter is implied by uniform continuity of F;

and xf/ - xfj (&kj) — 0). On the other hand, it follows from the properties (A.4) that (p((xkj) < t‘lw(&kj). Therefore, we have
P(gy)—>0 = a,;l(x:.(’ -)‘cf’) -0, as q -0
J

Since f, O (i=1,...,n) and (67) are bounded, each term on the right-hand side of (69) strongly converges to zero. Moreover, by
the assumption and continuity of F, we have

K= x®, F(xki) = F(x®), @i = u®,

where the notation — stands for weak convergence. Denoting F(x) by z, it follows from Lemma A3 that this cluster point (x*, z%°, u®)
solves 0 € T(x, z,u) as desired and the primal cluster point x* solves the problem (1) as well. The proof of uniqueness of weak cluster
point is standard, see [9,29] for more details. []

5. The dual-first version of Algorithm 2.1
As we know, Algorithm 2.1 first computes the primal intermediate point x* then the dual intermediate point i* at each iteration.
In this section, we describe its dual-first version. This means that it first computes the dual intermediate point then the primal

intermediate point at each iteration. For convenience, the dual-first version of Algorithm 2.1 is called Algorithm 5.1 from now on.

99

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

Algorithm 5.1. The dual-first version of Algorithm 2.1

Step 0. For i =1,...,n, choose x? eM, i’ €G,te (0, 1), pe©,1)and a;_y >0.Set k :=0.
Step 1. Choose f, > 0 and find #* such that

(I +B7) @) 3 gk + Y 0xk—q.
Step 2. For i = 1,...,1, choose appropriate «;;, > 0. For i =/ +1,...,n, find the smallest j, in (19) such that
xE@) = (I + oA (xF = a(F(xf) + Qi)
satisfies
a;(xf = xf (@), F(xf) = Fx{(@) < (1= pllxf = xf (@)l (70)

Take a;; = a;;_ %, and compute ¥ = x¥(a; ;). If x* = x, i =1,...,n, and @* = u*, then stop. Otherwise go to Step 3.
Step 3. Compute

df = ol (xf =3 = (FG) - FE)), i=1...n
n
df = Bt -+ Y 0k — 55,
Tk — 5 dh)+ (k- k)
S lldk 112 + k2

Choose 6, € (0,2]. Compute

Vi =

k+1 k ko k k
x; =xi—9kykdxi,z=1,...,n, u =u _9k7’kdu~

Set k := k+ 1, and go to Step 1.

As to the g, formally we choose it via the same way as (29).

Theorem 5.1. If Assumption 2.1 holds and 0, (2 — 0)) = +oo, then Algorithm 5.1 is weakly convergent.

Notice that the dual-first version of Algorithm 2.2 can be similarly derived and the associated weak convergence can be similarly
analyzed, thus we omit it here.

Be aware that, generally speaking, Algorithm 5.1 may have the difficulty in implementing (70). This is because that x*(«;) relies
on ii* whereas the latter is related to f. So, it seems somewhat impractical to choose appropriate f,.
However, Algorithm 5.1 is well-suited for finding an x € H such that

0€ F(x)+ A(x)+ Q*B(0Ox — q),

where F is further assumed to be bounded linear and skew-adjoint. The resulting algorithm is the following

Algorithm 5.2. A special case of Algorithm 5.1

Step 0. Choose x* € H, u® € G. Choose a > 0 and f via (73). Set k :=0.
Step 1. Find @* such that

(BI+B7") @) 3 pu* + 0x* —q.
Step 2. Find x* such that
(I + aA) (3%) 3 x* — a(F(F) + 0*i).

If ¥ = x* and @* = u*, then stop. Otherwise go to Step 3.
Step 3. Compute

d¥ = o' (xk = 3) = (F(x¥) - F(=9)),
d* = pu* — @) + Q(F — 5),
(xk — =%, dky + (uk -k, d¥)

k12 k12
gl + lldgll

Vi =

Choose 6, € (0,2]. Compute

k+1

— K k k+1
X =xt=0yd,, u

=uk - Qkykdli‘.

Set k :=k+ 1, and go to Step 1.

100

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107
6. Applications to convex minimization

In this section, we briefly discuss how to apply Algorithms 2.1, 2.2 and 5.1 to solving convex minimization.
A first application is to the separable convex minimization

minimize 2?=l(f,- +g)(x;), subject to Z:;lQ,-x,- -gEeX, (71)

where f;, g; : H; - R are closed proper convex functions, f; are further assumed to be continuously differentiable with the gradient
Vf;, and X is a nonempty closed convex set, onto which it is easy to project, say the first orthant or a ball. This problem can be
rewritten as

ss s n n
minimize Zi:l(fi +g)(x;)+ 6y (Zi:IQix,- - q) .
Under suitable assumptions, its optimal conditions are the following system of monotone inclusions
* n .
0 € Vfi(x;) +dg;(x;) + Q; 9 (Z;:lQixi - q) ,i=1,...,n

This corresponds to (1) with F; = Vf;, A, = dg; and B = 96, respectively.
A second application is to the following convex minimization

minimize f(x)+ g(x) — f:l Inx; — In(1 — (e, x)),

where f : R? — R is a continuously differentiable convex function with the gradient Vf, and g : R? — R is a closed proper convex
function, and e is a p-dimensional vector of all ones. Additionally, we assume that the set S = {x € R? : x > 0, (e,x) < 1} is included
in both domf and domg.

Under suitable assumptions, its optimal condition reads

0 € Vf(x)+0g(x)+Q"B(Qx—q).
This corresponds to (1) withn=1, F=Vf, A =0g and
. 1 1 I, T
B(z) = —-diag | —,...,—|, 0= , ¢g=(0,...,0,-1D",
zZ Zp41 —eT
respectively, where I, is the identity matrix. Obviously, B is continuous and monotone, thus maximal monotone, in its effective
domain {z € RP*!:z,>0,i=1,...,p+1}.

7. Implementation details

In this section, we discuss some key implementation details of the aforementioned splitting methods so as to assure and improve
their individual easiness and efficiency in practice.

7.1. How to choose beta

Let

2 2
2te—e”+ o 10; 11112l € @ 10: 111105l

Bix(esn) = 22—)ay = 2a;, 22t —¢)

B

where ¢ > 0 is given. The function g here is increasing with respect to € € (0, 21).
For Algorithms 2.1 and 2.2, we choose g, via

P = z:lzlﬂi,k
= Zi:] max{f; ;(e; 1), a;; } + Z?:H—l max{p; (& p), ;i }- (72)

For Algorithm 5.2, we choose f via
B =max{p(e; 1), a}, (73)

where ¢ > 0 is sufficiently small, say € = 10~°, even smaller.
7.2. How to adapt Q

If n = 1, then the problem (71) reduces to
minimize f(x)+ g(x), subjectto Ox=gq.
In this case, we check if /||O||,[|0Oll, < 2 is satisfied. If not, we adapt

(Q.9) < (Q.9)/VIQI 12l -

101

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

7.3. How to solve subproblem

In these algorithms above, there is one type of sub-problem (I + ¢A)(x) > w. Now we discuss how to solve it. (i) If A is further
linear, then we may use Matlab solver via

x=U+ad)\ w.

(ii) If A = V[is the gradient of some continuously differentiable convex function f, then we may resort to quasi-Newton method
with novel conditions using solely gradient to locate steplength; see [34, Sect. 5.3]. (iii) If A = F is continuously differentiable, then
we may use some Newton-type method to solve this sub-problem.

The other type of sub-problem is (ﬂl + B’l) (u) © p. We may solve it directly. Of course, if it is easier to evaluate the resolvent
of B, we instead consider Moreau identity

(p1+B) " =p ' I U+ B, VE>O.
Thus, the process of solving this sub-problem can be divided into

F=U+8B7'®). u=p"p-p.
7.4. How to deal with (39) in Algorithm 2.2

Upon reviewing the convergence proofs of Algorithm 2.2, we observed that (38) and (39) serve different purposes. The
former ensures monotone decrease in ||w* — w*||, while the latter’s significance lies in providing a theoretically rigorous proof of
convergence for Algorithm 2.2. Consequently, (39) may no longer be necessary in practice, as Algorithm 2.2 often performs well
for the first several hundred iterations (assuming it performs well at all).

8. Rudimentary experiments

In this section, we confirmed the effectiveness of our proposed splitting algorithms. In our writing style, rather than striving for
maximal test problems, we tried to make the basic ideas and techniques as clear as possible.

We performed all numerical experiments on a desktop computer equipped with a 3.00 GHz Intel(R) Core(TM) i5-7400 CPU and
8.00 GB of memory. The MATLAB R2020a platform was used as the implementation environment.

We compared our proposed splitting algorithms with other state-of-the-art splitting algorithms, selected for their similarities in
features, applicability, and implementation effort.

Our first test problem is from [7], which is to find an x € R" such that

0 € Dx —d + Q%06-(0x — q),
where
D = tridiag (=1 — h, 4+ 2h, 1), h=1/(m+1),
and
0 = [eye(m); (=1/m) * ones(1,m)]; q = [zeros(m, 1);—1/m)]

and C C R™*! is the first orthant. To ensure that ¢; = (1,0, ...,0)7 solves it, we set d = De, in our practical implements. Thus, the
problem’s unique solution is x* = ¢;. We chose

F=05D-D"), A(x)=05D+D")x—d, B=0ds

to match the problem (1), and we chose x* = (0, ...,0)7 as the starting point, as done in [7].

We chose this particular problem because it features the constraint set (given by a general half-space and the first orthant) onto
which it is easy to project individually, but whose intersection poses a more difficult projection problem. This property makes it
relatively tricky to apply some splitting methods such as those [10,21] as they cannot fully split the problem and thus have to
perform an extra and nontrivial projection per iteration.

In practical implementations, we set m = 1000. In this case, we via Matlab got

1 1
Zl0llI2ll., ~ 02508, Z||Q||2 ~ 0.2503.

VC splitting: A splitting method of Vu [33] and Condat [2], also described in [8, Algorithm 6]. We implemented it in the same
way as [8].

ES1: An extended splitting method recently proposed in [7]. We implemented it in the same way as [7].

JE splitting: A splitting method of Johnstone and Eckstein, whose parameters, suggested in [23], were

pso=1 px=py=1l 4=1 y=10.

102

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

— -G - VC splitting

JE splitting
-7~ ES1
- —+ - ES2

-~ — Algorithm 2.1
— —% — Algorithm 2.2

Algorithm 5.2
— 3 - pd2003

log10([|z" — 2|l

0 20 40 60 80 100 120
number of iterations

Fig. 1. Numerical results on the first test problem.

Moreover, we set G, = Q, G, = eye(m), z! = zeros(m, 1) and

1

w} = zeros(m+1,1), w, = zeros(m, 1), wi = —GlTw% - Gzrwé.

ES2: An extended splitting method recently proposed in [8]. We implemented it in the same way as [8].
Notice that, for the following four algorithms, we chose

a € {0.2,0.3,0.4,0.5,0.6,0.7,0.8}

to be close to 1/p ~ 0.25, with p = trace(0.5(D + DT))/m.

Algorithm 2.1: We chose a = 0.6 and 6, = 6 = 1.0, and we chose § via (73), with £ = 1072, i.e., f = a.

Algorithm 2.2: We chose « = 0.5, and we chose 6, and g in the same as those in Algorithm 2.1.

Algorithm 5.2: We chose «, 6, and f in the same as those in Algorithm 2.2.

pd2003: A primal-dual splitting method described in (11). We chose « = 0.5 and 9, =6 = 1.8.

For the last four algorithms above, we set x° = zeros(m, 1) and u® = zeros(m + 1, 1).

Numerical results on the first test problem were given in Figs. 1-2. From Fig. 1, we can see convergence behaviors of these eight
different algorithms in the first 120 iterations. From Fig. 2, we can see that ES1, Algorithms 2.1 and 2.2 (in the n = 1 case) achieved
the accuracy 1078, respectively. Furthermore, Algorithms 2.2 and 5.2 were faster than all the others.

An interesting observation is that {||x*—x*||}, where x* is generated by Algorithm 2.2, is not necessarily monotonically decreasing.
This is because that what we have proved in (66) is merely for monotonicity of {|jw* — w*||}.

Our second test problem is to solve the following monotone inclusion

0 € F(x)+ A(x) + Q*B(Ox — q),
where Q = diag(l, ..., n), ¢ = (0,...,0)" and
F(x) = (3/x1, %y, ... ,x,,)T, A = tridiag(n, 1, —n), B = diag(arctan, ..., arctan).

Note that such F is uniformly continuous and x*=0 is its unique solution. We took x° = %(1, 1,..., DT as the starting point and
lx¥ — x*|| < € as the stopping criterion.
Algorithm 2.2: We chose g, via (72)

By = max{py(e; p), ay}, with e=107,

and chose t = 0.5, p = 0.1 and 0, = 6 = 1.0. By the way, if we chose £ = 1070, we observed the same numerical results.

pd2003: A primal-dual splitting method described in (11). We chose t =0.5, p=0.1, 6, =6 = 1.8.

Numerical results on the second test problem were reported in Table 1, where the format “number of iteration/ CPU time (in
seconds)” was used and “‘~” means failure of the desired accuracy within the first 200 iterations. For Algorithm 2.2, the condition (39)
was no longer applied.

From Table 1, we can see that Algorithm 2.2 was by far faster than pd2003 because the former no longer entails time-consuming
computations of B’s resolvent.

103

Y. Dong

Mathematics and Computers in Simulation 223 (2024) 86-107

log2('TIME')
&

// s , - -G - VC splitting
- ,/ JE splitting
4+ 4 ’ - 7
AL o 7~ EST
1:g K -—+ - ES2
-7 - =& - Algorithm 2.1
*/7 .
_58/, — =% - Algorithm 2.2 | |
/’ Algorithm 5.2
/ - - - pd2003
b
-6 L L L L L
1 2 3 5 6 7 8
-log10(¢)
Fig. 2. Numerical results on the first test problem.
Table 1
Numerical results on the second test problem.
€ Algorithm n=>5 n=10 n=50 n =100
1072 Algo2.2 11/2.655 8/1.953 38/40.23 84/176.2
pd2003 59/13.01 10/6.637 33/75.65 60/250.1
1073 Algo2.2 28/3.104 27/5.908 141/146.2 145/305.6
pd2003 - - - 93/394.5
1074 Algo2.2 183/18.87 173/36.51 - -
pd2003 - - - -

9. Conclusions

In this article, we have proposed two new splitting methods for solving systems of three-operator monotone inclusions in real
Hilbert spaces, where the third operator is linearly composed. These methods primarily involve evaluating the first operator and
computing resolvents with respect to the other two operators. Importantly, they fully decouple the third operator from its linear
composition operator. One of these methods is specifically designed for the case where the first operator is Lipschitz continuous.
We have provided back-tracking techniques to determine appropriate step lengths and also propose a dual-first version of this
method. For the other method, which corresponds to a uniformly continuous operator, we have developed innovative back-
tracking techniques, incorporating additional conditions to determine step lengths. The weak convergence of either method is
proven using characteristic operator techniques. We also have discussed implementation details to enhance the user-friendliness
of these methods. To validate the efficiency of our proposed splitting methods, including their special cases and variations, we have
conducted numerical experiments and compared their performance with other state-of-the-art methods. The results demonstrated
the effectiveness of our proposed splitting methods in solving test problems. In future work, we plan to further investigate these
splitting methods and propose their variable metric variants, incorporating relative errors as discussed in Ref. [5]. By exploring
these extensions, we aim to enhance the capabilities and applicability of our proposed splitting methods for solving systems of
three-operator monotone inclusions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The author is greatly indebted to the Editor-in-Chief, Professor Laura Gardini, the handling editor and the referees for their
encouraging words and insightful suggestions, which improve the quality of this article. Special thanks go to Yiyi Li for writing
Matlab codes and Yuanyuan Zhang and Mengke Zhu for careful reading of the current version of this manuscript. This work was
partially supported by the National Natural Science Foundation of China (12201075).

104

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107
Appendix A

Let A : H = H be an operator. It is called monotone iff
(x=x',a-d)y>0, V(x,a)€ A, Y, d)e€A;
maximal monotone iff it is monotone and for given ¥ € H and 4 € H the following implication relation holds

(x=%,a-a)>0, V(x,a)eA = (%4 €A

Let A : H = H be an operator. It is called u-monotone if there exists some yu > 0 such that
(x=x",a—d)>ullx-x"|?, V(x,a) €A, V', d)eA.
If u > 0, then it is usually called p-strongly monotone.
— (T T\T
Denote by x = Ocpseens X)) and
£y Ay
F= , A= , 0=10y,....0,1
F, A

n n

Lemma Al ([8]). For the system of monotone inclusions (1), we introduce the dual variable u € G. Then

A x 0 I O*)(x 0
T(x,z,u) = F-1 z|+|-1 0 0]lz|+]|0 (A1)
B ' \u -0 0 0)\u q

must be maximal monotone.

In this article, such T is called the characteristic operator or eigenoperator [8,11,35] with respect to the problem (1) above.

Lemma A2. Let F : H - H and A : H = H be maximal monotone. Denote by
x(@) = (I + ad)™ (x — aF(x)).

Assume that x € domF n domA and there exists a such that
x(a) € domA, Va € (0,a).

Then the following hold

(@ a—-0 = x-—x(a)—0, (A.2)

) a7lx = x(@)|l < min{|lw]l :w € F(x)+ A(x)}, (A.3)

(¢) lim i(r))f a”lx = x(@)|| = min{||w| :w € F(x)+ A®x)}, (A.4)

@ 1< XD @ g e 0,a) (A.5)
lx = x(@)|l — o

Moreover, if F + A is maximal monotone on domF N domA, then the minimum on the right-hand side of either (A.3) or (A.4) must be
uniquely attainable.

Proof. We first prove (A.2) and (A.3). In view of the notation x(a), we have

X=X@ _ gy e Ax(@), a >0,

which, together with w — F(x) € A(x) and monotonicity of A4, implies

x — x(a) x — x(a) _

0 < (x(a) — x, — F(x) —w+ F(x)) = (x(a) — x, w).

By making use of the Cauchy-Schwarz inequality, we further get
1
lx—= @I < (w,x = x(@) < wllllx = x(@)l.

So, we conclude that either x — x(a) = 0 or ||x — x(a)||/a < |Jw]|.
Finally, we refer to [1,19] for proofs of (A.4) and (A.5) respectively. []

Below, we give a well-known result.

Lemma A3. Consider any maximal monotone operator T : H = H. Assume that the sequence {w*} in H converges weakly to w, and
the sequence {s*} on domT converges strongly to s. If T(w*) 3 s* for dll k, then the relation T(w) > s must hold.

105

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107
For a short proof of Lemma A3, we refer to [32] and the references cited therein.

Lemma A4. Assume that F : H — H is continuous and monotone and A : H =3 H is maximal monotone. If F and A are further
up-monotone and p 4-monotone, respectively, and

AF) 2 a”l(x — %) — F(x) - Q*u, (A.6)
A(x") 3 —F(x*) — Q*u", A7)
where a > 0, then the following inequality holds
(x=x*, a7 (x = %) = (F(x) - F(%))) = (Q(% — x*), u —u*)
2(x =% a7 (x = %) = (F(x) = FE)) + (up + w)llx = x*|1%.

Proof. In view of (A.6) and (A.7) and A’s u,-monotonicity, we get
(x=x" a7 (x =) = (F(0) = F(x) = Q" —u") = ugll% = x|,
Combining this with F’s up-monotonicity, i.e.,
(% = x*, F(X) = F(x") 2 upllx = x*||?

yields the desired result. []

Lemma A5. Let Q : H — G be nonzero, bounded and linear operator, and let a > 0, t € R. If 4a > t>§||Q||?, then the following
(x, ax) + (u, pu) —1(Qx, pu) > p(a, B, 10) (IxI* + llul*)
holds for all x € H and all u € G, where

o p.10)= 3 (a+p - Via—p2+2PICR).

To our best knowledge, Lemma A5 or its equivalent version was given in [15, Sect. 3] and [24, Lemma 5.1]. Very recently, such
a nice result was used in [10] and generalized in the author’s 2017 manuscript of [8].

References

[1] H. Brézis, Opérateurs Maximaux Monotones, North-Holland, Amsterdam, 1973.
[2] L. Condat, A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms, J. Optim. Theory Appl.
158 (2) (2013) 460-479.
[3] S. Dafermos, Traffic equilibrium and variational inequalities, Transp. Sci. 14 (1980) 42-54.
[4] Y.D. Dong, Splitting Methods for Monotone Inclusions, (PhD dissertation), Nanjing University, 2003.
[5] Y.D. Dong, A variable metric proximal-descent algorithm for monotone operators, J. Appl. Math. Comput. 38 (2012) 505-521.
[6] Y.D. Dong, Douglas-Rachford splitting method for semi-definite programming, J. Appl. Math. Comput. 51 (2016) 569-591.
[7]1 Y.D. Dong, Weak convergence of an extended splitting method for monotone inclusions, J. Global Optim. 79 (1) (2021) 257-277.
[8] Y.D. Dong, A new splitting method for systems of monotone inclusions in Hilbert spaces, Math. Comput. Simulation 203 (2023) 518-537.
[9] Y.D. Dong, A. Fischer, A family of operator splitting methods revisited, Nonlinear Anal. 72 (2010) 4307-4315.
[10] Y.D. Dong, X.H. Yu, A new splitting method for monotone inclusions of three operators, Calcolo 56 (1) (2019) Art. 3.
[11] Y.D. Dong, X. Zhu, An inertial splitting method for monotone inclusions of three operators, Int. J. Math. Stat. Oper. Res. 2 (1) (2022) 43-60.
[12] J. Eckstein, A simplified form of block-iterative operator splitting and an asynchronous algorithm resembling the multi-block alternating direction method
of multipliers, J. Optim. Theory Appl. 173 (1) (2017) 155-182.
[13] J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal algorithm for maximal monotone operators, Math. Program. 55
(1992) 293-318.
[14] J. Eckstein, M.C. Ferris, Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control, Inf. J.
Comput. 10 (1998) 218-235.
[15] J. Eckstein, B.F. Svaiter, A family of projective splitting methods for the sum of two maximal monotone operators, Math. Program. 111 (2008) 173-199.
[16] O. Giiler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991) 403-419.
[17] B.S. He, A class of projection and contraction methods for monotone variational inequalities, Appl. Math. Optim. 35 (1997) 69-76.
[18] H.J. He, D.R. Han, A distributed douglas-rachford splitting method for multi-block convex minimization problems, Adv. Comput. Math. 42 (1) (2016)
27-53.
[19] Y.Y. Huang, Y.D. Dong, New properties of forward-backward splitting and a practical proximal-descent algorithm, Appl. Math. Comput. 237 (2014) 60-68.
[20] A. Irschara, C. Zach, M. Klopschitz, H. Bischof, Large-scale, dense city reconstruction from user-contributed photos, Comput. Vis. Image Und. 116 (2012)
2-15.
[21] O.S. Iyiola, C.D. Enyi, Y. Shehu, Reflected three-operator splitting method for monotone inclusion problem, Optim. Methods Softw. 37 (4) (2022) 1527-1565.
[22] P.R. Johnstone, J. Eckstein, Single-forward-step projective splitting: exploiting cocoercivity, Comput. Optim. Appl. 78 (2021) 125-166.
[23] P.R. Johnstone, J. Eckstein, Projective splitting with forward steps, Math. Program. 191 (2022) 631-670.
[24] P. Latafat, P. Patrinos, Asymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operators, Comput. Optim. Appl.
68 (1) (2017) 57-93.
[25] P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16 (1979) 964-979.
[26] B. Martinet, Regularisation d’inéquations variationelles par approximations successives, Rev. Fr. d’Informatique Recherche Opér. 4 (1970) 154-158.
[27] M.A. Noor, Mixed quasi variational inequalities, Appl. Math. Comput. 146 (2003) 553-578.
[28] T. Pennanen, Dualization of generalized equations of maximal monotone type, SIAM J. Optim. 10 (2000) 809-835.

106

http://refhub.elsevier.com/S0378-4754(24)00104-6/sb1
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb2
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb2
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb2
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb3
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb4
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb5
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb6
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb7
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb8
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb9
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb10
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb11
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb12
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb12
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb12
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb13
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb13
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb13
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb14
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb14
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb14
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb15
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb16
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb17
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb18
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb18
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb18
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb19
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb20
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb20
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb20
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb21
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb22
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb23
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb24
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb24
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb24
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb25
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb26
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb27
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb28

Y. Dong Mathematics and Computers in Simulation 223 (2024) 86-107

[29] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877-898.

[30] M.V. Solodov, P. Tseng, Modified projection-type methods for monotone variational inequalities, SIAM J. Control Optim. 34 (1996) 1814-1830.

[31] D.F. Sun, A class of iterative methods for solving nonlinear projection equations, J. Optim. Theory Appl. 91 (1) (1996) 123-140.

[32] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2) (2000) 431-446.

[33] B.C. Vu, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput. Math. 38 (3) (2013) 667-681.

[34] D. Wicht, M. Schneider, T. Béhlke, An efficient solution scheme for small-strain crystal-elasto-viscoplasticity in a dual framework, Comput. Methods Appl.
Mech. Engrg. 358 (2020) 112611.

[35] X. Zhu, Inertial Splitting Methods for Monotone Inclusions of Three Operators (Thesis), Zhengzhou University, 2020.

107

http://refhub.elsevier.com/S0378-4754(24)00104-6/sb29
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb30
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb31
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb32
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb33
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb34
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb34
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb34
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb35

	Extended splitting methods for systems of three-operator monotone inclusions with continuous operators
	Introduction
	Methods
	Fi is Lipschitz continuous
	Fi is uniformly continuous

	Weak convergence in Lipschitz continuity case
	Weak convergence in uniform continuity case
	The dual-first version of Algorithm 2.1
	Applications to convex minimization
	Implementation details
	How to choose beta
	How to adapt Q
	How to solve subproblem
	How to deal with step in Algorithm 2.2

	Rudimentary experiments
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A
	References

