
Mathematics and Computers in Simulation 223 (2024) 86–107

A
0

Contents lists available at ScienceDirect

Mathematics and Computers in Simulation

journal homepage: www.elsevier.com/locate/matcom

Original articles

Extended splitting methods for systems of three-operator monotone
inclusions with continuous operators
Yunda Dong
School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, 450001, PR China

A R T I C L E I N F O

Keywords:
Monotone inclusion
Characteristic operator
Uniform continuity
Splitting method
Weak convergence

A B S T R A C T

In this article, we propose two new splitting methods for solving systems of three-operator
monotone inclusions in real Hilbert spaces, where the first operator is continuous monotone,
the second is maximal monotone and the third is maximal monotone and is linearly composed.
These methods primarily involve evaluating the first operator and computing resolvents with
respect to the other two operators. For one method corresponding to Lipschitz continuous
operator, we give back-tracking techniques to determine step lengths. Moreover, we propose
a dual-first version of this method. For the other method, which corresponds to a uniformly
continuous operator, we develop innovative back-tracking techniques, incorporating additional
conditions to determine step lengths. The weak convergence of either method is proven using
characteristic operator techniques. Notably, either method fully decouples the third operator
from its linear composition operator. Numerical results demonstrate the effectiveness of our
proposed splitting methods, together with their special cases and variants, in solving test
problems.

1. Introduction

Let 𝑖, 𝑖 = 1,… , 𝑛, and  be real infinite-dimensional Hilbert spaces, with usual inner product ⟨⋅, ⋅⟩ and induced norm
‖𝑥‖ =

√

⟨𝑥, 𝑥⟩ for each vector 𝑥. In this article, we focus on the following system of three-operator monotone inclusions

0 ∈ 𝐹𝑖(𝑥𝑖) + 𝐴𝑖(𝑥𝑖) +𝑄∗
𝑖 𝐵

(

∑𝑛
𝑖=1

𝑄𝑖𝑥𝑖 − 𝑞
)

, 𝑖 = 1,… , 𝑛, (1)

where 𝐹𝑖, 𝐴𝑖 ∶𝑖 ⇉ 𝑖 are maximal monotone operators, 𝐵∶ ⇉  is a maximal monotone operator, and each 𝑄𝑖 ∶𝑖 →  is nonzero
bounded linear operator with its adjoint operator 𝑄∗

𝑖 , and 𝑞 ∈  is a vector. This problem models a wide range of problems arising
from definite linear systems, linear/quadratic programming, semi-definite programming, complementarity problems, variational
inequality problems, optimal control, traffic equilibrium, image reconstruction, portfolio selection. For further details, please refer
to [3,6,14,20,22,29,32].

Recently, an extended Douglas-Rachford splitting method for solving (1) was proposed by the author [8], building upon prior
work by [9,13,25]. At each iteration, the method requires computations of the resolvent for each individual operator in the monotone
inclusion. Under the weakest possible assumptions, the author proved its weak convergence using characteristic operator techniques.
Interestingly, the proposed method includes as special cases the Douglas-Rachford splitting method for a two-operator monotone
inclusion and an equivalent version of a splitting method for convex minimization [18].

Now consider an important special case of the problem above. If 𝑛 = 1, 𝐹 is continuous, and 𝐵 vanishes, then it reduces to

0 ∈ 𝐹 (𝑥) + 𝐴(𝑥). (2)

E-mail address: ydong@zzu.edu.cn.
vailable online 4 April 2024
378-4754/© 2024 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.matcom.2024.03.024
Received 31 December 2022; Received in revised form 25 December 2023; Accepted 18 March 2024

https://www.elsevier.com/locate/matcom
https://www.elsevier.com/locate/matcom
mailto:ydong@zzu.edu.cn
https://doi.org/10.1016/j.matcom.2024.03.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2024.03.024&domain=pdf
https://doi.org/10.1016/j.matcom.2024.03.024

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

𝑘

T

i
a
f

T

T

e
s

I

A
𝑡

s

T

In this case, Tseng’s splitting method is particularly well-suited. Choose 𝑥0 ∈ dom𝐹 ∩ dom𝐴. Choose 𝜎 > 0, 𝛽 ∈ (0, 1), 𝛼−1 > 0. At
th iteration, find the smallest 𝑖𝑘 in 𝛼 = 𝛼𝑘−1𝛽𝑖, 𝑖 = 0, 1,…, such that 𝑥𝑘(𝛼) = (𝐼 + 𝛼𝐴)−1(𝑥𝑘 − 𝛼𝐹 (𝑥𝑘)) satisfies

𝛼‖𝐹 (𝑥𝑘) − 𝐹 (𝑥𝑘(𝛼))‖ ≤ (1 − 𝜌)‖𝑥𝑘 − 𝑥𝑘(𝛼)‖, 𝜌 ∈ (0, 1). (3)

hen take 𝛼𝑘 = 𝛼𝑘−1𝛽𝑖𝑘 , and compute 𝑥̄𝑘 = 𝑥𝑘(𝛼𝑘). Finally, compute

𝑥𝑘+1 = 𝑥̄𝑘 − 𝛼𝑘𝐹 (𝑥̄𝑘) + 𝛼𝑘𝐹 (𝑥𝑘).

Tseng [32, Theorem 3.4] proved the method’s individual weak convergence when 𝐹 is monotone and Lipschitz continuous, and 𝐹
s monotone and uniformly continuous respectively. However, to overcome its small steplength phenomenon, the author proposed
n alternative in his Ph.D. dissertation [4]. Choose 𝑥0 ∈ dom𝐹 ∩ dom𝐴. Choose 𝑡 ∈ (0, 1), 𝜌 ∈ (0, 1) and 𝛼−1 > 0. At 𝑘th iteration,
ind the smallest 𝑗𝑘 in 𝛼 = 𝛼𝑘−1𝑡𝑗 , 𝑗 = 0, 1,…, such that 𝑥𝑘(𝛼) = (𝐼 + 𝛼𝐴)−1(𝑥𝑘 − 𝛼𝐹 (𝑥𝑘)) satisfies

𝛼⟨𝑥𝑘 − 𝑥𝑘(𝛼), 𝐹 (𝑥𝑘) − 𝐹 (𝑥𝑘(𝛼))⟩ ≤ (1 − 𝜌)‖𝑥𝑘 − 𝑥𝑘(𝛼)‖2. (4)

ake 𝛼𝑘 = 𝛼𝑘−1𝑡𝑗𝑘 , and compute 𝑥̄𝑘 = 𝑥𝑘(𝛼𝑘). Compute in order

𝑑𝑘 = 𝑥𝑘 − 𝑥̄𝑘 − 𝛼𝑘(𝐹 (𝑥𝑘) − 𝐹 (𝑥̄𝑘)), 𝛾𝑘 = ⟨𝑥𝑘 − 𝑥̄𝑘, 𝑑𝑘⟩∕‖𝑑𝑘‖2.

hen choose 𝜃𝑘 ∈ (0, 2] and compute

𝑥𝑘+1 = 𝑥𝑘 − 𝜃𝑘𝛾𝑘𝑑
𝑘. (5)

Notice that the condition (4) itself is originally due to [17,30,31] in the setting of monotone variational inequalities and later
xtended in [4] to such monotone inclusions. Almost in the same time, Noor [27] independently proposed a conceptual method
imilar to (5) but without our self-adaptive choice of 𝛼𝑘, and he proved the method’s convergence in the finite-dimensional space.

Next, we will consider the problem (1) in the case where 𝑛 = 1, i.e.,

0 ∈ 𝐹 (𝑥) + 𝐴(𝑥) +𝑄∗𝐵(𝑄𝑥 − 𝑞). (6)

n this scenario, the primal monotone inclusion can be transformed into the following primal–dual monotone inclusion
(

0
0

)

∈
(

𝐹 𝑄∗

−𝑄 0

)(

𝑥
𝑢

)

+
(

0
𝑞

)

+
(

𝐴
𝐵−1

)(

𝑥
𝑢

)

. (7)

s an application of the method (5), a special case can be obtained when dom𝐹 = dom𝐴 = . Choose 𝑥0 ∈  and 𝑢0 ∈ . Choose
∈ (0, 1) and 𝛼−1 > 0. At 𝑘th iteration, find the smallest 𝑗𝑘 in 𝛼 = 𝛼𝑘−1𝑡𝑗 , 𝑗 = 0, 1,…, such that

𝑥𝑘(𝛼) = (𝐼 + 𝛼𝐴)−1(𝑥𝑘 − 𝛼(𝐹 (𝑥𝑘) +𝑄∗𝑢𝑘)) (8)

𝑢𝑘(𝛼) = (𝐼 + 𝛼𝐵−1)−1(𝑢𝑘 + 𝛼(𝑄𝑥𝑘 − 𝑞)) (9)

atisfies in order

𝛼⟨𝑥𝑘 − 𝑥𝑘(𝛼), 𝐹 (𝑥𝑘) − 𝐹 (𝑥𝑘(𝛼))⟩ ≤ (1 − 𝜌)(‖𝑥𝑘 − 𝑥𝑘(𝛼)‖2 + ‖𝑢𝑘 − 𝑢𝑘(𝛼)‖2). (10)

ake 𝛼𝑘 = 𝛼𝑘−1𝑡𝑗𝑘 , and compute 𝑥̄𝑘 = 𝑥𝑘(𝛼𝑘), 𝑢̄𝑘 = 𝑢𝑘(𝛼𝑘). Take

𝑑𝑘𝑥 = 𝑥𝑘 − 𝑥̄𝑘 − 𝛼𝑘(𝐹 (𝑥𝑘) − 𝐹 (𝑥̄𝑘)) − 𝛼𝑘𝑄
∗(𝑢𝑘 − 𝑢̄𝑘),

𝑑𝑘𝑢 = 𝑢𝑘 − 𝑢̄𝑘 + 𝛼𝑘𝑄(𝑥𝑘 − 𝑥̄𝑘),

𝛾𝑘 =
⟨𝑥𝑘 − 𝑥̄𝑘, 𝑑𝑘𝑥⟩ + ⟨𝑢𝑘 − 𝑢̄𝑘, 𝑑𝑘𝑢 ⟩

‖𝑑𝑘𝑥‖2 + ‖𝑑𝑘𝑢 ‖2
.

Then choose 𝜃𝑘 ∈ (0, 2] and compute

𝑥𝑘+1 = 𝑥𝑘 − 𝜃𝑘𝛾𝑘𝑑
𝑘
𝑥 , 𝑢𝑘+1 = 𝑢𝑘 − 𝜃𝑘𝛾𝑘𝑑

𝑘
𝑢 . (11)

The problem (6) above reminds us of a splitting method recently proposed by Johnstone and Eckstein [23] (JE splitting for
short), which can be used to solve it. Consider the following monotone inclusion of finding a 𝑧 ∈  such that

0 ∈ 𝐺∗
1𝑇1𝐺1𝑧 + 𝐺∗

2𝑇2𝐺2𝑧 + 𝑇3𝑧,

where 𝑇1 ∶1 ⇉ 1, 𝑇2 ∶2 ⇉ 2 are maximal monotone, and 1, 2 are Hilbert spaces, and 𝑇3 ∶ →  is monotone and Lipschitz
continuous, 𝐺1 ∶ → 1 and 𝐺2 ∶ → 2 are nonzero bounded linear. Their novel splitting method is given as follows. Choose
𝑧1 ∈ , 𝑤1

1 ∈ 1, 𝑤1
2 ∈ 2, 𝑤1

3 ∈ . Choose 𝜌3,0 > 0, 𝛾 > 0, 𝛥 > 0. For 𝑖 = 1, 2, choose 𝜌𝑖,𝑘 > 0 and compute

𝑥𝑘𝑖 = (𝐼 + 𝜌𝑖,𝑘𝑇𝑖)−1(𝐺𝑖𝑧
𝑘 + 𝜌𝑖,𝑘𝑤

𝑘
𝑖), 𝑦𝑘𝑖 = 𝜌−1𝑖,𝑘 (𝐺𝑖𝑧

𝑘 + 𝜌𝑖,𝑘𝑤
𝑘
𝑖 − 𝑥𝑘𝑖).

Choose 𝜌3,𝑘 to be the smallest element of 𝜌3,𝑘−1{1, 0.5, 0.52,…} such that

𝜌 𝛥‖𝑇 𝑧𝑘 −𝑤𝑘
‖

2 ≤
⟨

𝑇 𝑧𝑘 −𝑤𝑘, 𝑇 (𝑧𝑘 − 𝜌 (𝑇 𝑧𝑘 −𝑤𝑘)) −𝑤𝑘⟩ . (12)
87

3,𝑘 3 3 3 3 3 3,𝑘 3 3 3

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong
Compute in order

𝑥𝑘3 = 𝑧𝑘 − 𝜌3,𝑘(𝑇3𝑧𝑘 −𝑤𝑘
3), 𝑦𝑘3 = 𝑇3𝑥

𝑘
3 ,

𝑢𝑘𝑖 = 𝑥𝑘𝑖 − 𝐺𝑖𝑥
𝑘
3 , 𝑖 = 1, 2, 𝑣𝑘 = 𝐺∗

1𝑦
𝑘
1 + 𝐺∗

2𝑦
𝑘
2 + 𝑦𝑘3 .

If 𝜋𝑘 = ‖𝑢𝑘1‖
2 + ‖𝑢𝑘2‖

2 + 𝛾−1‖𝑣𝑘‖2 = 0, then stop. Otherwise, choose 𝛽𝑘 ∈ [0.01, 1.99] and compute

𝛼𝑘 = 𝜋−1
𝑘 𝛽𝑘 max

{

0, ⟨𝑧𝑘, 𝑣𝑘⟩ + ⟨𝑤𝑘
1 , 𝑢

𝑘
1⟩ + ⟨𝑤𝑘

2 , 𝑢
𝑘
2⟩ −

∑3
𝑖=1

⟨𝑥𝑘𝑖 , 𝑦
𝑘
𝑖 ⟩
}

,

𝑧𝑘+1 = 𝑧𝑘 − 𝛾−1𝛼𝑘𝑣
𝑘,

𝑤𝑘+1
𝑖 = 𝑤𝑘

𝑖 − 𝛼𝑘𝑢
𝑘
𝑖 , 𝑖 = 1, 2, 𝑤𝑘+1

3 = −𝐺∗
1𝑤

𝑘+1
1 − 𝐺∗

2𝑤
𝑘+1
2 .

At first glance, the method (11) has several similarities to JE splitting: At each iteration, the main costs are operator’s evaluations
of (Lipschitz) continuous operator, computations of each resolvent of other two. However, by comparing their individual ways of
choosing steplengths, we find that the corresponding condition (12) in JE splitting has a different property from the one (10). The
most striking feature that impresses us deeply is that the former merely requires operator’s evaluations of continuous operator,
whereas the latter requires operator evaluations of continuous operator and two resolvent computations. Thus, the condition (12)
in JE splitting can considerably reduce computations in determining the associated steplengths.

Motivated by these observations, in this article, we aim to develop new splitting methods, where each involved steplength
condition is similar to (10), but, as in JE splitting, no longer requires the resolvent of 𝐵−1. Assuming that each 𝐹𝑖 is further
continuous, the key ingredients of new methods can be stated as follows. Choose 𝑥0 ∈  and 𝑢0 ∈ . Choose 𝑡 ∈ (0, 1) and
𝛼𝑖,−1 > 0 (𝑖 = 1,… , 𝑛). At 𝑘th iteration, for the current primal–dual iterate (𝑥𝑘, 𝑢𝑘), find the smallest 𝑗𝑘 in 𝛼 = 𝛼𝑘−1𝑡𝑗 , 𝑗 = 0, 1,…, such
that

𝑥𝑘𝑖 (𝛼𝑖) = (𝐼 + 𝛼𝑖𝐴𝑖)−1(𝑥𝑘𝑖 − 𝛼𝑖(𝐹𝑖(𝑥𝑘𝑖) +𝑄∗
𝑖 𝑢

𝑘))

satisfies

𝛼𝑖⟨𝑥
𝑘
𝑖 − 𝑥𝑘𝑖 (𝛼𝑖), 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖 (𝛼𝑖))⟩ ≤ (1 − 𝜌)‖𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼𝑖)‖

2 (13)

for 𝑖 = 1,… , 𝑛. Take 𝛼𝑖,𝑘 = 𝛼𝑖,𝑘−1𝑡𝑗𝑘 , and compute 𝑥̄𝑘𝑖 = 𝑥𝑘𝑖 (𝛼𝑖,𝑘). Choose 𝛽𝑘 > 0 and find 𝑢̄𝑘 such that
(

𝛽𝑘𝐼 + 𝐵−1) (𝑢̄𝑘) ∋ 𝛽𝑘𝑢
𝑘 +

∑𝑛
𝑖=1

𝑄𝑖𝑥̄
𝑘
𝑖 − 𝑞. (14)

Finally, based on the information above, we obtain the new primal–dual iterate (𝑥𝑘+1, 𝑢𝑘+1) in some cheap but different ways; see
Algorithms 2.1 and 2.2 below for more details.

Clearly, when we compare the condition (13) (in the 𝑛 = 1 case) with the one (10), we have removed resolvent computations with
respect to 𝐵−1. This design is particularly useful when such resolvent is difficult to evaluate, as shown in the second test problem
for numerical demonstrations. Additionally, our proposed method is ideally suited for the case, where the operator is skew-adjoint
(in part). Notice that the intermediate dual point in (14) (in the 𝑛 = 1 case) is obviously different and can take full advantage of the
latest information, when compared to the one in (9). In this sense, our proposed splitting methods are desirable and are not direct
applications of the existing method (5).

As shown below, if each 𝐹𝑖 is Lipschitz continuous, then we are able to use (13) to prove weak convergence of Algorithm 2.1.
Impressively, if each 𝐹𝑖 is merely assumed to be uniformly continuous but not necessarily Lipschitz continuous, we have to resort
to additional conditions

‖𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼) − 𝛼(𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖 (𝛼)))‖
2 ≤ 𝜏⟨𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼), 𝑥

𝑘
𝑖 − 𝑥𝑘𝑖 (𝛼) − 𝛼(𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖 (𝛼)))⟩

for 𝑖 = 1,… , 𝑛, where 𝜏 > 1 is any given positive number, to prove weak convergence of the corresponding Algorithm 2.2. To the
best of our knowledge, this is a new idea of combining this group of conditions with (13) (further require 𝛼 ← 𝛼𝑖) to determine
steplengths in some algorithm. In particular, this new type of conditions still allows for larger steplengths than the condition (3);
see Lemma 4.1 below for further explanations.

The rest of this article is organized as follows. In Section 2, we fully state our proposed splitting methods in Hilbert spaces in
the setting of the monotone inclusions (1) above. In Section 3 and Section 4, under the weakest possible conditions, with the help
of characteristic operator techniques [8,11,12,35], by assuming Lipschitz continuity and uniform continuity of the first operator,
we prove individual weak convergence of the generated primal sequence of the iterates, respectively. In Section 5, we present the
dual-first version of Algorithm 2.1. In Section 6 and Section 7, we discuss some other aspects of the proposed methods. In Section 8,
we conducted numerical experiments to confirm the effectiveness of our proposed splitting methods, together with their special cases
and variants, in solving our two test problems, when compared with other state-of-the-art algorithms. In Section 9, we conclude
this article with some remarks. In Appendix A, we provide some useful concepts and preliminary results.

Throughout this article, we will agree that the notation (𝑥, 𝑎) ∈ 𝐴 and the notation 𝑥 ∈ dom𝐴 ⊆ , 𝑎 ∈ 𝐴(𝑥) have the same
meaning, where 𝐴 ∶ ⇉  is maximal monotone and dom𝐴 = {𝑥 ∈  ∶𝐴(𝑥) ≠ ∅} is its effective domain. We will denote by 𝛿
88

the indicator function (cf. [8]) of a nonempty set .

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

A

2. Methods

In this section, we describe our proposed splitting method for systems of monotone inclusions (1) in details.
The method’s design is based on the following

ssumption 2.1. For the system of monotone inclusions (1), we assume that: (i) For 𝑖 = 1,… , 𝑛, each 𝐹𝑖 is continuous. (ii) There
exists an 𝑙 ∈ {0, 1,… , 𝑛−1} such that each of 𝐹1,… , 𝐹𝑙 is skew-adjoint, linear operator. (iii) There exist 𝑥∗1 ∈ 1, ..., 𝑥∗𝑛 ∈ 𝑛, 𝑢∗ ∈ 
such that they solve

0 ∈ 𝐹𝑖(𝑥𝑖) + 𝐴𝑖(𝑥𝑖) +𝑄∗
𝑖 𝑢, 𝑖 = 1,… , 𝑛, (15)

0 ∈ −
∑𝑛

𝑖=1
𝑄𝑖𝑥𝑖 + 𝑞 + 𝐵−1(𝑢). (16)

Furthermore, ∅ ≠ dom𝐹𝑖, ∅ ≠ dom𝐴𝑖 for 𝑖 = 1,… , 𝑛, ∅ ≠ dom𝐵. (iv) Every dom𝐹𝑖 ∩ dom𝐴𝑖 is closed for 𝑖 = 1,… , 𝑛.

First of all, we would like to follow [8, Sect. 3] to explain Assumption 2.1 a bit. For example, we consider

min 𝑓 (𝑥) + 𝑓 (𝑥) + 𝑔(𝑄𝑥 − 𝑞),

where 𝑓, 𝑓 ∶𝑛 → , 𝑔 ∶ 𝑚 →  are closed, proper convex functions and 𝑓 is further continuously differentiable, 𝑄 is an 𝑚 × 𝑛
matrix, with its transpose 𝑄𝑇 , and 𝑞 ∈ 𝑚. If there exists an 𝑥 such that

𝑥 ∈ ri dom𝑓 ∩ ri dom𝑓, 𝑄𝑥 − 𝑞 ∈ ri dom𝑔, (17)

then its optimality condition is

0 ∈ ∇𝑓 (𝑥) + 𝜕𝑓 (𝑥) +𝑄𝑇 𝜕𝑔(𝑄𝑥 − 𝑞),

where ri stands for the relative interior, ∇𝑓 and 𝜕𝑓 stand for the gradient and subdifferential of 𝑓 and 𝑓 respectively; see [28] for
more details. If 𝑔 is taken to be the indicator function 𝛿{0}, then (17) reduces to

𝑥 ∈ ri dom∇𝑓 ∩ ri dom𝜕𝑓 , 𝑄𝑥 − 𝑞 = 0 (18)

because the set ri dom𝑔 becomes {0}, and we further have

0 ∈ ∇𝑓 (𝑥) + 𝜕𝑓 (𝑥) +𝑄𝑇 𝜕𝛿{0}(𝑄𝑥 − 𝑞).

Of course, we may replace (18) by

𝑥 ∈ int dom∇𝑓 ∩ int dom𝜕𝑓 , 𝑄𝑥 − 𝑞 = 0,

where int stands for the interior. This is stronger but more convenient.
For the associated steplengths of our proposed splitting algorithms below, at 𝑘th iteration, we adopt the following Armijo-like

way. For 𝑖 = 𝑙 + 1,… , 𝑛, choose 𝑡 ∈ (0, 1). We set

𝛼𝑖 = 𝛼𝑖,𝑘−1𝑡
𝑗 ,

{

𝑗 = −1, 0, 1,… , if 𝐹𝑖 is strongly monotone,
𝑗 = 0, 1,… , otherwise.

(19)

2.1. 𝐹𝑖 is Lipschitz continuous

In the case of 𝐹𝑖 being Lipschitz continuous, we give

Algorithm 2.1. Our proposed splitting algorithm in Lipschitz continuity case

Step 0. For 𝑖 = 1,… , 𝑛, choose 𝑥0𝑖 ∈ 𝑖, 𝑢0 ∈ . Choose 𝛼𝑖,−1 > 0, 𝜌 ∈ (0, 1). Set 𝑘 ∶= 0.
Step 1. For 𝑖 = 1,… , 𝑙, choose appropriate 𝛼𝑖,𝑘 > 0. For 𝑖 = 𝑙 + 1,… , 𝑛, find the smallest 𝑗𝑘 in (19) such that

𝑥𝑘𝑖 (𝛼𝑖) = (𝐼 + 𝛼𝑖𝐴𝑖)−1(𝑥𝑘𝑖 − 𝛼𝑖(𝐹𝑖(𝑥𝑘𝑖) +𝑄∗
𝑖 𝑢

𝑘))

satisfies

𝛼𝑖⟨𝑥
𝑘
𝑖 − 𝑥𝑘𝑖 (𝛼𝑖), 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖 (𝛼𝑖))⟩ ≤ (1 − 𝜌)‖𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼𝑖)‖

2. (20)

Take 𝛼𝑖,𝑘 = 𝛼𝑖,𝑘−1𝑡𝑗𝑘 , and compute

𝑥̄𝑘𝑖 = 𝑥𝑘𝑖 (𝛼𝑖,𝑘). (21)

Choose 𝛽𝑘 > 0 via (29) below and find 𝑢̄𝑘 such that
(

𝛽𝑘𝐼 + 𝐵−1) (𝑢̄𝑘) ∋ 𝛽𝑘𝑢
𝑘 +

∑𝑛
𝑖=1

𝑄𝑖𝑥̄
𝑘
𝑖 − 𝑞. (22)

𝑘 𝑘 𝑘 𝑘
89

If 𝑥̄𝑖 = 𝑥𝑖 , 𝑖 = 1,… , 𝑛, and 𝑢̄ = 𝑢 , then stop. Otherwise go to Step 2.

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong
Step 2. For 𝑖 = 1,… , 𝑛, compute

𝑑𝑘𝑥𝑖 = 𝛼−1𝑖,𝑘 (𝑥
𝑘
𝑖 − 𝑥̄𝑘𝑖) − (𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)) −𝑄∗

𝑖 (𝑢
𝑘 − 𝑢̄𝑘), (23)

𝑑𝑘𝑢 = 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘), (24)

𝛾𝑘 =

∑𝑛
𝑖=1⟨𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖 , 𝑑

𝑘
𝑥𝑖
⟩ + ⟨𝑢𝑘 − 𝑢̄𝑘, 𝑑𝑘𝑢 ⟩

∑𝑛
𝑖=1‖𝑑𝑘𝑥𝑖‖

2 + ‖𝑑𝑘𝑢 ‖2
. (25)

Then choose 𝜃𝑘 ∈ (0, 2] and the new iterates are given by

𝑥𝑘+1𝑖 = 𝑥𝑘𝑖 − 𝜃𝑘𝛾𝑘𝑑
𝑘
𝑥𝑖
, 𝑖 = 1,… , 𝑛, (26)

𝑢𝑘+1 = 𝑢𝑘 − 𝜃𝑘𝛾𝑘𝑑
𝑘
𝑢 . (27)

Set 𝑘 ∶= 𝑘 + 1, and go to Step 1.

Notice that, in the case of 𝐹𝑖 being strongly monotone, it follows from (20) that

𝛼𝑖𝜇𝐹𝑖‖𝑥
𝑘
𝑖 − 𝑥𝑘𝑖 (𝛼𝑖)‖

2 ≤ (1 − 𝜌)‖𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼𝑖)‖
2 ⇒ 𝛼𝑖 ≤ (1 − 𝜌)∕𝜇𝐹𝑖 . (28)

Thus, the sequence {𝛼𝑖,𝑘} must be uniformly bounded above as desired.
As to 𝛽𝑘, we set 𝛽𝑘 =

∑𝑛
𝑖=1𝛽𝑖,𝑘 and choose

𝛽𝑖,𝑘 ≥
2𝜀 − 𝜀2 + 𝛼2𝑖,𝑘‖𝑄𝑖‖

2

2 (2 − 𝜀)𝛼𝑖,𝑘
, 0 < 𝜀 < 2, 𝑖 = 1,… , 𝑙,

𝛽𝑖,𝑘 ≥
2𝜌 𝜀 − 𝜀2 + 𝛼2𝑖,𝑘‖𝑄𝑖‖

2

2 (2𝜌 − 𝜀)𝛼𝑖,𝑘
, 0 < 𝜀 < 2𝜌, otherwise,

(29)

for 𝑖 = 1,… , 𝑛. These two relations are obtained from

1 + 𝛼𝑖,𝑘𝛽𝑖,𝑘 −
√

(1 − 𝛼𝑖,𝑘𝛽𝑖,𝑘)2 + 𝛼2𝑖,𝑘‖𝑄𝑖‖
2 ≥ 𝜀,

𝜌 + 𝛼𝑖,𝑘𝛽𝑖,𝑘 −
√

(𝜌 − 𝛼𝑖,𝑘𝛽𝑖,𝑘)2 + 𝛼2𝑖,𝑘‖𝑄𝑖‖
2 ≥ 𝜀,

(30)

respectively.

2.2. 𝐹𝑖 is uniformly continuous

In the case of 𝐹𝑖 being uniformly continuous, we give

Algorithm 2.2. Our proposed splitting algorithm in uniform continuity case

Step 0. Let 𝛺𝑖 = dom𝐹𝑖 ∩ dom𝐴𝑖 for 𝑖 = 1,… , 𝑛. Choose 𝑥0𝑖 ∈ 𝛺𝑖 and 𝑢0 ∈ . Choose 𝑡 ∈ (0, 1) and 𝛼−1 > 0. Set 𝑘 ∶= 0.
Step 1. Find the smallest 𝑗𝑘 in (19) such that

𝑥𝑘𝑖 (𝛼) = (𝐼 + 𝛼𝐴𝑖)−1(𝑥𝑘𝑖 − 𝛼(𝐹𝑖(𝑥𝑘𝑖) +𝑄∗
𝑖 𝑢

𝑘))

satisfies 𝑥𝑘𝑖 (𝛼) ∈ 𝛺𝑖 and (38)–(39) below. Take 𝛼𝑘 = 𝛼𝑘−1𝑡𝑗𝑘 , and compute

𝑥̄𝑘𝑖 = 𝑥𝑘𝑖 (𝛼𝑘), 𝑖 = 1,… , 𝑛. (31)

Choose 𝛽𝑘 via (40) below and find 𝑢̄𝑘 such that
(

𝛽𝑘𝐼 + 𝐵−1) (𝑢̄𝑘) ∋ 𝛽𝑘𝑢
𝑘 +

∑𝑛
𝑖=1

𝑄𝑖𝑥̄
𝑘
𝑖 − 𝑞. (32)

If 𝑥̄𝑘𝑖 = 𝑥𝑘𝑖 , 𝑖 = 1,… , 𝑛, and 𝑢̄𝑘 = 𝑢𝑘, then stop. Otherwise go to Step 2.
Step 2. For 𝑖 = 1,… , 𝑛, take

𝑑𝑘𝑥𝑖 = 𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 − 𝛼𝑘(𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)) − 𝛼𝑘𝑄
∗
𝑖 (𝑢

𝑘 − 𝑢̄𝑘), (33)

𝑑𝑘𝑢 = 𝛼𝑘𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘), (34)

𝛾𝑘 =

∑𝑛
𝑖=1⟨𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖 , 𝑑

𝑘
𝑥𝑖
⟩ + ⟨𝑢𝑘 − 𝑢̄𝑘, 𝑑𝑘𝑢 ⟩

∑𝑛
𝑖=1‖𝑑𝑘𝑥𝑖‖

2 + ‖𝑑𝑘𝑢 ‖2
. (35)

Then choose 𝜃𝑘 ∈ (0, 2] and the new iterates are given by

𝑥𝑘+1𝑖 = 𝑃𝛺𝑖
[𝑥𝑘𝑖 − 𝜃𝑘𝛾𝑘𝑑

𝑘
𝑥𝑖
], 𝑖 = 1,… , 𝑛, (36)

𝑢𝑘+1 = 𝑢𝑘 − 𝜃𝑘𝛾𝑘𝑑
𝑘
𝑢 . (37)

Set 𝑘 ∶= 𝑘 + 1, and go to Step 1.
90

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

f
c
s

First of all, we discuss how to choose 𝛼𝑘 > 0 in Step 1 of Algorithm 2.2. We give the following conditions

𝛼⟨𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼), 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖 (𝛼))⟩ ≤ (1 − 𝜌)‖𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼)‖
2, (38)

‖𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼) − 𝛼(𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖 (𝛼)))‖
2 ≤ 𝜏⟨𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼), 𝑥

𝑘
𝑖 − 𝑥𝑘𝑖 (𝛼) − 𝛼(𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖 (𝛼)))⟩ (39)

or 𝑖 = 1,… , 𝑛, where 𝜏 > 1 is any given positive number. Importantly, this is still a new idea of making use of this group of
onditions to determine steplengths, although its root is in [5]. By the way, the inequality (38) always holds whenever such 𝐹𝑖 is
kew-adjoint.

As to 𝛽𝑘, we set 𝛽𝑘 =
∑𝑛

𝑖=1𝛽𝑖,𝑘 and choose

𝛽𝑖,𝑘 ≥
2𝜀 − 𝜀2 + 𝛼2𝑘‖𝑄𝑖‖

2

2 (2 − 𝜀)𝛼𝑘
, 0 < 𝜀 < 2, 𝑖 = 1,… , 𝑙,

𝛽𝑖,𝑘 ≥
2𝜌 𝜀 − 𝜀2 + 𝛼2𝑘‖𝑄𝑖‖

2

2 (2𝜌 − 𝜀)𝛼𝑘
, 0 < 𝜀 < 2𝜌, otherwise,

(40)

for 𝑖 = 1,… , 𝑛. These two relations are obtained from

1 + 𝛼𝑘𝛽𝑖,𝑘 −
√

(1 − 𝛼𝑘𝛽𝑖,𝑘)2 + 𝛼2𝑘‖𝑄𝑖‖
2 ≥ 𝜀,

𝜌 + 𝛼𝑘𝛽𝑖,𝑘 −
√

(𝜌 − 𝛼𝑘𝛽𝑖,𝑘)2 + 𝛼2𝑘‖𝑄𝑖‖
2 ≥ 𝜀,

(41)

respectively. Please note that 𝛼𝑘 here is not 𝛼𝑖,𝑘 in (30) there. We will discuss a practical way of choosing 𝛽𝑘 for both Algorithms 2.1
and 2.2 in Section 7 below.

Interestingly, if 𝐵 vanishes and 𝑛 = 1, then Algorithm 2.2 coincides well with the method of [4, Algorithm 4.2.4].
Obviously, a nice feature of Algorithms 2.1 and 2.2 is that either decouples 𝐵 from its linear composition operator. This feature

is similar to that of [8, Algorithm 3.1], whose iterative formulae can be stated as follows. At 𝑘th iteration, for 𝑥𝑘𝑖 ∈ 𝑖, 𝑎𝑘𝑖 ∈ 𝐴𝑖(𝑥𝑘𝑖),
𝑖 = 1,… , 𝑛, 𝑥𝑘𝑛+1 ∈ , 𝑢𝑘 ∈ . Compute

𝑢̄𝑘 = 𝑢𝑘 − (𝑥𝑘𝑛+1 −
∑𝑛

𝑖=1
𝑄𝑖𝑥

𝑘
𝑖 + 𝑞)∕𝛽,

(𝛼𝑖𝐼 + 𝐹𝑖)(𝑥̄𝑘𝑖) = 𝛼𝑖𝑥
𝑘
𝑖 − 𝑎𝑘𝑖 −𝑄∗

𝑖 𝑢̄
𝑘, (42)

(𝛼𝑛+1𝐼 + 𝐵)(𝑥̄𝑘𝑛+1) ∋ 𝛼𝑛+1𝑥
𝑘
𝑛+1 + 𝑢̄𝑘.

Then, choose 𝜃 ∈ (0, 2), calculate

𝜙𝑘 ∶=
∑𝑛+1

𝑖=1
𝛼𝑖‖𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖 ‖

2 + ⟨𝑥̄𝑘𝑛+1 −
∑𝑛

𝑖=1
𝑄𝑖𝑥̄

𝑘
𝑖 + 𝑞, 𝑢𝑘 − 𝑢̄𝑘⟩,

𝜑𝑘 ∶=
∑𝑛+1

𝑖=1
‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖

2 + ‖𝑥̄𝑘𝑛+1 −
∑𝑛

𝑖=1
𝑄𝑖𝑥̄

𝑘
𝑖 + 𝑞‖2,

𝛾𝑘 ∶=𝜃𝜙𝑘∕𝜑𝑘.

Finally, for 𝑖 = 1,… , 𝑛, compute in order

(𝛼𝑖𝐼 + 𝐴𝑖)(𝑥𝑘+1𝑖) ∋ 𝛼𝑖𝑥
𝑘
𝑖 + 𝑎𝑘𝑖 − 𝛾𝑘(𝑥𝑘𝑖 − 𝑥̄𝑘𝑖),

𝛼𝑛+1𝑥
𝑘+1
𝑛+1 = 𝛼𝑛+1𝑥

𝑘
𝑛+1 − 𝛾𝑘(𝑥𝑘𝑛+1 − 𝑥̄𝑘𝑛+1),

𝑢𝑘+1 = 𝑢𝑘 − 𝛾𝑘 (𝑥̄𝑘𝑛+1 −
∑𝑛

𝑖=1
𝑄𝑖𝑥̄

𝑘
𝑖 + 𝑞),

to get the new iterates. As proved in [8], if 𝛼𝑖 > 0, 𝑖 = 1,… , 𝑛 + 1, and

𝛽 >
∑𝑛

𝑖=1
‖𝑄𝑖‖

2∕(4𝛼𝑖) + 1∕(4𝛼𝑛+1),

then the sequence {(𝑥𝑘1 ,… , 𝑥𝑘𝑛)} generated by the method of [8, Algorithm 3.1] weakly converges to an element of the solution set
of (1).

However, Algorithms 2.1 and 2.2 differ widely from this method above because neither requires computing the resolvent of
each 𝐹𝑖 as in (42) at each iteration, but instead, they require appropriate steplength selection. This can be beneficial for numerical
performance, especially when the resolvent of each 𝐹𝑖 is difficult or impossible to compute exactly. Additionally, for the method
of [8, Algorithm 3.1], it remains in force even 𝐹𝑖 in (42) is replaced by (possibly multi-valued) maximal monotone operator 𝐴̄𝑖.

In essence, Algorithms 2.1 and 2.2 are extensions of the method of [4, Algorithm 4.2.4], while the method of [8, Algorithm 3.1]
is an extended DR splitting method.

3. Weak convergence in Lipschitz continuity case

In this section, we analyze convergence properties of the primal sequence and the dual sequence generated by Algorithm 2.1.
Under the weakest possible assumptions, we prove the former’s weak convergence to a solution of the problem (1) above.

Theorem 3.1. Let {𝑥𝑘𝑖 }(𝑖 = 1,… , 𝑛), {𝑢𝑘} be the sequences generated by Algorithm 2.1. If Assumption 2.1 holds and 𝐹𝑖 is Lipschitz
continuous for 𝑖 = 1,… , 𝑛, each 𝛼𝑖,𝑘 is well-defined and can be determined within finite trials, and each sequence {𝛼𝑖,𝑘} has positive lower
91

and upper bounds.

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

i
s

T

Proof. The cases of 𝑖 = 1,… , 𝑙. Obvious.
The cases of 𝑖 = 𝑙 + 1,… , 𝑛. Since 𝐹𝑖 is 𝜅𝑖-Lipschitz continuous and monotone, we have

0 ≤ 𝛼𝑖⟨𝑥
𝑘
𝑖 − 𝑥𝑘𝑖 (𝛼𝑖), 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖 (𝛼𝑖))⟩ ≤ 𝛼𝑖 𝜅𝑖 ‖𝑥

𝑘
𝑖 − 𝑥𝑘𝑖 (𝛼𝑖)‖

2.

If 𝛼𝑖 takes the form of 𝛼𝑖,𝑘−1𝑡𝑗 via (20), then the following relation

𝛼𝑖 𝜅𝑖 = 𝛼𝑖,𝑘−1𝑡
𝑗 𝜅𝑖 ≤ 1 − 𝜌

will hold for some sufficiently large 𝑗. This indicates that 𝛼𝑖,𝑘 is well-defined and can be determined within finite trials.
In view of (19), the chosen step length falls into two cases. One is that 𝛼𝑖,𝑘 takes 𝛼𝑖,𝑘−1𝑡𝑗𝑘 for 𝑗𝑘 = −1 or 𝑗𝑘 = 0. In such case, it

s not difficult (but somewhat complicated) to get its positive lower bound. The other is that 𝛼𝑖,𝑘 takes 𝛼𝑖,𝑘−1𝑡𝑗𝑘 for some 𝑗𝑘 ≥ 1. In
uch case, 𝛼𝑖,𝑘𝑡−1 does not satisfy (20), i.e.,

𝛼𝑖,𝑘𝑡
−1
⟨𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼𝑖,𝑘𝑡

−1), 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖 (𝛼𝑖,𝑘𝑡
−1))⟩ > (1 − 𝜌)‖𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼𝑖,𝑘𝑡

−1)‖2.

Combining this with the Cauchy–Schwarz inequality and 𝐹 ′
𝑖 s Lipschitz continuity yields

𝛼𝑖,𝑘 > 𝛼𝑖 = (1 − 𝜌) 𝑡∕𝜅𝑖,

where 𝜅𝑖 is 𝐹 ′
𝑖 s Lipschitz constant, i.e., {𝛼𝑖,𝑘} has a positive lower bound. Of course, such sequence also has an upper bound from

(19) and (28). □

Denote by

𝑤 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑥1
⋮
𝑥𝑛
𝑢

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑑 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑑𝑥1
⋮
𝑑𝑥𝑛
𝑑𝑢

⎞

⎟

⎟

⎟

⎟

⎠

. (43)

heorem 3.2. In the setting of Theorem 3.1, there exists some positive number 𝛾̂ such that

‖𝑤𝑘+1 −𝑤∗
‖

2 ≤ ‖𝑤𝑘 −𝑤∗
‖

2 − 𝜃𝑘(2 − 𝜃𝑘)𝛾̂ ‖𝑤𝑘 − 𝑤̄𝑘
‖

2,

where 𝑤 is defined in (43). Furthermore, if ∑

𝑘 𝜃𝑘(2 − 𝜃𝑘) = +∞, the involved primal sequence is weakly convergent.

Proof. For 𝑖 = 1,… , 𝑛, it follows from (21) that

𝐴𝑖(𝑥̄𝑘𝑖) ∋ 𝛼−1𝑖,𝑘 (𝑥
𝑘
𝑖 − 𝑥̄𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖) −𝑄∗

𝑖 𝑢
𝑘, (44)

which, together with (15)

𝐴𝑖(𝑥∗𝑖) ∋ −𝐹𝑖(𝑥∗𝑖) −𝑄∗
𝑖 𝑢

∗,

and monotonicity of each 𝐴𝑖 , implies

0 ≤ ⟨𝑥̄𝑘𝑖 − 𝑥∗𝑖 , 𝛼
−1
𝑖,𝑘 (𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖) − (𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥∗𝑖)) −𝑄∗

𝑖 (𝑢
𝑘 − 𝑢∗)⟩, 𝑖 = 1,… , 𝑛.

Adding these relations to the following (due to each 𝐹𝑖’s monotonicity)

0 ≤ ⟨𝑥̄𝑘𝑖 − 𝑥∗𝑖 , 𝐹𝑖(𝑥̄𝑘𝑖) − 𝐹𝑖(𝑥∗𝑖)⟩, 𝑖 = 1,… , 𝑛

yields

0 ≤ ⟨𝑥̄𝑘𝑖 − 𝑥∗𝑖 , 𝛼
−1
𝑖,𝑘 (𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖) − (𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)) −𝑄∗

𝑖 (𝑢
𝑘 − 𝑢∗)⟩,

i.e., for 𝑖 = 1,… , 𝑛, we have

0 ≤ ⟨𝑥̄𝑘𝑖 − 𝑥∗𝑖 , 𝛼
−1
𝑖,𝑘 (𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖) − (𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖))⟩ − ⟨𝑥̄𝑘𝑖 − 𝑥∗𝑖 , 𝑄

∗
𝑖 (𝑢

𝑘 − 𝑢∗)⟩. (45)

On the other hand, it follows from (22) that

𝐵−1(𝑢̄𝑘) ∋ 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘) +
∑𝑛

𝑖=1
𝑄𝑖𝑥̄

𝑘
𝑖 − 𝑞, (46)

which, together with

𝐵−1(𝑢∗) ∋
∑𝑛

𝑖=1
𝑄𝑖𝑥

∗
𝑖 − 𝑞

and monotonicity of 𝐵−1, implies

0 ≤ ⟨𝑢̄𝑘 − 𝑢∗, 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘) +
∑𝑛

𝑖=1
𝑄𝑖(𝑥̄𝑘𝑖 − 𝑥∗𝑖)⟩

𝑘 ∗ 𝑘 𝑘 𝑘 ∗
∑𝑛 𝑘 ∗
92

= ⟨𝑢̄ − 𝑢 , 𝛽𝑘(𝑢 − 𝑢̄)⟩ + ⟨𝑢̄ − 𝑢 ,
𝑖=1

𝑄𝑖(𝑥̄𝑖 − 𝑥𝑖)⟩

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

I

b

= ⟨𝑢̄𝑘 − 𝑢∗, 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘)⟩ +
∑𝑛

𝑖=1
⟨𝑄∗

𝑖 (𝑢̄
𝑘 − 𝑢∗), 𝑥̄𝑘𝑖 − 𝑥∗𝑖 ⟩.

Thus, by this relation and (45), we can get

0 ≤
∑𝑛

𝑖=1
⟨𝑥̄𝑘𝑖 − 𝑥∗𝑖 , 𝛼

−1
𝑖,𝑘 (𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖) − (𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖))⟩ −

∑𝑛
𝑖=1

⟨𝑥̄𝑘𝑖 − 𝑥∗𝑖 , 𝑄
∗
𝑖 (𝑢

𝑘 − 𝑢̄𝑘)⟩ + ⟨𝑢̄𝑘 − 𝑢∗, 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘)⟩

=
∑𝑛

𝑖=1
⟨𝑥̄𝑘𝑖 − 𝑥∗𝑖 , 𝛼

−1
𝑖,𝑘 (𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖) − (𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)) −𝑄∗

𝑖 (𝑢
𝑘 − 𝑢̄𝑘)⟩ + ⟨𝑢̄𝑘 − 𝑢∗, 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘)⟩.

By using 𝑥̄ − 𝑥∗ = 𝑥 − 𝑥∗ − (𝑥 − 𝑥̄) and 𝛽𝑘 ∶=
∑𝑛

𝑖=1𝛽𝑖,𝑘, we can further get
∑𝑛

𝑖=1
⟨𝑥𝑘𝑖 − 𝑥∗𝑖 , 𝛼

−1
𝑖,𝑘 (𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖) − (𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)) −𝑄∗

𝑖 (𝑢
𝑘 − 𝑢̄𝑘)⟩ + ⟨𝑢𝑘 − 𝑢∗, 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘)⟩

≥
∑𝑛

𝑖=1
⟨𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 , 𝛼

−1
𝑖,𝑘 (𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖) − (𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)) −𝑄∗

𝑖 (𝑢
𝑘 − 𝑢̄𝑘)⟩ + ⟨𝑢𝑘 − 𝑢̄𝑘, 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘)⟩

=
∑𝑛

𝑖=1
𝛼−1𝑖,𝑘

(

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 − 𝛼𝑖,𝑘⟨𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖 , 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)⟩

)

−
∑𝑛

𝑖=1
⟨𝑄𝑖(𝑥𝑘𝑖 − 𝑥̄𝑘𝑖), 𝑢

𝑘 − 𝑢̄𝑘⟩ + 𝛽𝑘‖𝑢
𝑘 − 𝑢̄𝑘‖2. (47)

Since we have assumed that, for 𝑖 = 1,… , 𝑙, 𝐹𝑖 is further skew-adjoint, we have

⟨𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 , 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)⟩ = 0.

As to 𝑖 = 𝑙 + 1,… , 𝑛, we adopt (20) to get

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 − 𝛼𝑖,𝑘⟨𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖 , 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)⟩ ≥ 𝜌‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖

2.

Therefore, (47) can be divided into two parts. One is that
∑𝑙

𝑖=1

(

𝛼−1𝑖,𝑘 ‖𝑥
𝑘
𝑖 − 𝑥̄𝑘𝑖 ‖

2 − ⟨𝑄𝑖(𝑥𝑘𝑖 − 𝑥̄𝑘𝑖), 𝑢
𝑘 − 𝑢̄𝑘⟩ + 𝛽𝑖,𝑘‖𝑢

𝑘 − 𝑢̄𝑘‖2
)

. (48)

The other is that
∑𝑛

𝑖=𝑙+1

(

𝛼−1𝑖,𝑘 𝜌‖𝑥
𝑘
𝑖 − 𝑥̄𝑘𝑖 ‖

2 − ⟨𝑄𝑖(𝑥𝑘𝑖 − 𝑥̄𝑘𝑖), 𝑢
𝑘 − 𝑢̄𝑘⟩ + 𝛽𝑖,𝑘‖𝑢

𝑘 − 𝑢̄𝑘‖2
)

. (49)

Then, combining the sum of these two parts with (47), Lemma A5 and the conditions (29) and Theorem 3.1 yields

⟨𝑤𝑘 −𝑤∗, 𝑑𝑘⟩ ≥ ⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩ > 0.

So, it follows from this relation, (26) and (27) that

‖𝑤𝑘+1 −𝑤∗
‖

2

= ‖𝑤𝑘 −𝑤∗ − 𝜃𝑘𝛾𝑘𝑑
𝑘
‖

2

= ‖𝑤𝑘 −𝑤∗
‖

2 − 2𝜃𝑘𝛾𝑘⟨𝑤𝑘 −𝑤∗, 𝑑𝑘⟩ + 𝜃2𝑘 𝛾
2
𝑘 ‖𝑑

𝑘
‖

2

≤ ‖𝑤𝑘 −𝑤∗
‖

2 − 2𝜃𝑘𝛾𝑘⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩ + 𝜃2𝑘 𝛾
2
𝑘 ‖𝑑

𝑘
‖

2.

Combining this with (25), i.e.,

𝛾𝑘 = ⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩∕‖𝑑𝑘‖2

yields

‖𝑤𝑘+1 −𝑤∗
‖

2

≤ ‖𝑤𝑘 −𝑤∗
‖

2 − 2𝜃𝑘𝛾𝑘⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩ + 𝜃2𝑘 𝛾
2
𝑘 ‖𝑑

𝑘
‖

2

= ‖𝑤𝑘 −𝑤∗
‖

2 − 𝜃𝑘(2 − 𝜃𝑘)
(

⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩∕‖𝑑𝑘‖2
)

⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩

= ‖𝑤𝑘 −𝑤∗
‖

2 − 𝜃𝑘(2 − 𝜃𝑘)𝛾𝑘⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩.

(50)

It remains to prove that the sequence {𝛾𝑘} has a positive lower bound. In fact, it follows from (25) that

𝛾𝑘 =

∑𝑛
𝑖=1⟨𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖 , 𝑑

𝑘
𝑥𝑖
⟩ + ⟨𝑢𝑘 − 𝑢̄𝑘, 𝑑𝑘𝑢 ⟩

∑𝑛
𝑖=1‖𝑑𝑘𝑥𝑖‖

2 + ‖𝑑𝑘𝑢 ‖2
.

n view of (23) and (24), the denominator is bounded above by
(

∑𝑛
𝑖=1

(𝛼−2𝑖 + 𝜅2
𝑖 + ‖𝑄∗

𝑖 ‖
2) + 𝛽2𝑘

)(

∑𝑛
𝑖=1

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 + ‖𝑢𝑘 − 𝑢̄𝑘‖2

)

provided that 𝐹𝑖 is 𝜅𝑖-Lipschitz continuous. As to the numerator, by Lemma A5, (29) and (30), we know that (48) is bounded below
y

1
2
∑𝑙

𝑖=1
𝛼−1𝑖,𝑘 𝜀

(

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 + ‖𝑢𝑘 − 𝑢̄𝑘‖2

)

≥ 1
2
𝜀 𝛼̄−1𝑖

(

∑𝑙
𝑖=1

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 + 𝑙‖𝑢𝑘 − 𝑢̄𝑘‖2

)

,

where 𝛼̄𝑖 (𝑖 = 1,… , 𝑙) stands for an upper bound of the sequence {𝛼𝑖,𝑘}. Similarly, (49) is further bounded below by

1 ∑𝑛
𝛼−1 𝜀

(

‖𝑥𝑘 − 𝑥̄𝑘‖2 + ‖𝑢𝑘 − 𝑢̄𝑘‖2
)

≥ 1 𝜀 𝛼̄−1
(

∑𝑛
‖𝑥𝑘 − 𝑥̄𝑘‖2 + (𝑛 − 𝑙)‖𝑢𝑘 − 𝑢̄𝑘‖2

)

,

93

2 𝑖=𝑙+1 𝑖,𝑘 𝑖 𝑖 2 𝑖 𝑖=𝑙+1 𝑖 𝑖

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong
where 𝛼̄𝑖 (𝑖 = 𝑙 + 1,… , 𝑛) stands for an upper bound of the sequence {𝛼𝑖,𝑘} and its existence follows from Theorem 3.1. So, the
numerator must be bounded below by

𝜀
2max{𝛼̄𝑖}

(

∑𝑛
𝑖=1

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 + ‖𝑢𝑘 − 𝑢̄𝑘‖2

)

, (51)

where max{𝛼̄𝑖} = max{𝛼̄𝑖 ∶ 𝑖 = 1,… , 𝑛}. Thus, it can be easily seen that the sequence {𝛾𝑘} has a positive lower bound indeed.
Since the numerator in 𝛾𝑘 is equal to ⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩ and is bounded below by (51), we have

⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩ ≥ 𝜀
2max{𝛼̄𝑖}

(

∑𝑛
𝑖=1

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 + ‖𝑢𝑘 − 𝑢̄𝑘‖2

)

= 𝜀
2max{𝛼̄𝑖}

‖𝑤𝑘 − 𝑤̄𝑘
‖

2.

Thus, it follows from (50) that there exists some 𝛾̂ > 0 such that

‖𝑤𝑘+1 −𝑤∗
‖

2 ≤ ‖𝑤𝑘 −𝑤∗
‖

2 − 𝜃𝑘(2 − 𝜃𝑘)𝛾̂ ‖𝑤𝑘 − 𝑤̄𝑘
‖

2.

So, we can conclude that: (a) The limit of the sequence {‖𝑤𝑘 − 𝑤∗
‖} exists and {𝑤𝑘} is bounded in norm; (b) The sequence

{𝜃𝑘(2− 𝜃𝑘)‖𝑤𝑘 − 𝑤̄𝑘
‖

2} converges to zero. Combining this with ∑

𝑘𝜃𝑘(2− 𝜃𝑘) = +∞ yields that there must exist some subsequence of
{‖𝑤𝑘−𝑤̄𝑘

‖} converging to zero. For notational simplicity, without loss of generality, we may assume that the sequence {‖𝑤𝑘−𝑤̄𝑘
‖}

itself converges to zero. Since each 𝐹𝑖 is Lipschitz continuous, it can be easily seen that

(𝑖) 𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 → 0, 𝑖 = 1,… , 𝑛, 𝑢𝑘 − 𝑢̄𝑘 → 0; (52)

(𝑖𝑖) {𝑥𝑘𝑖 }, {𝐹𝑖(𝑥𝑘𝑖)}, 𝑖 = 1,… , 𝑛, {𝑢𝑘} are bounded in norm. (53)

Next, we will make use of Lemma A3 to prove the remaining part. To this end, we follow the definition of the set 𝑇 to get

𝑇 (𝑥̄𝑘, 𝐹 (𝑥𝑘), 𝑢̄𝑘) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴1(𝑥̄𝑘1) + 𝐹1(𝑥𝑘1) +𝑄∗
1 𝑢̄

𝑘

⋮

𝐴𝑛(𝑥̄𝑘𝑛) + 𝐹𝑛(𝑥𝑘𝑛) +𝑄∗
𝑛 𝑢̄

𝑘

𝑥𝑘1 − 𝑥̄𝑘1
⋮

𝑥𝑘𝑛 − 𝑥̄𝑘𝑛
𝐵−1(𝑢̄𝑘) −

∑𝑛
𝑖=1𝑄𝑖𝑥̄𝑘𝑖 + 𝑞

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Combining this with (44) and (46) yields

𝑇 (𝑥̄𝑘, 𝐹 (𝑥𝑘), 𝑢̄𝑘) ∋

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛼−11,𝑘(𝑥
𝑘
1 − 𝑥̄𝑘1) −𝑄∗

1(𝑢
𝑘 − 𝑢̄𝑘)

⋮

𝛼−1𝑛,𝑘(𝑥
𝑘
𝑛 − 𝑥̄𝑘𝑛) −𝑄∗

𝑛(𝑢
𝑘 − 𝑢̄𝑘)

𝑥𝑘1 − 𝑥̄𝑘1
⋮

𝑥𝑘𝑛 − 𝑥̄𝑘𝑛
𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (54)

To invoke Lemma A3, we first consider all the terms on the right-hand side of (54). In fact, it follows from boundedness of 𝛼−1𝑖,𝑘
(𝑖 = 1,… , 𝑛), 𝛽𝑘, 𝑄∗

𝑖 (𝑖 = 1,… , 𝑛) and (52) that each term strongly converges to zero. On the other hand, according to (53), there
exists one weak cluster point such that

𝑥𝑘𝑗 ⇀ 𝑥∞, 𝐹 (𝑥𝑘𝑗) ⇀ 𝐹 (𝑥∞), 𝑢𝑘𝑗 ⇀ 𝑢∞,

where the notation ⇀ stands for weak convergence. Combining this with (52) yields

𝑥̄𝑘𝑗 ⇀ 𝑥∞, 𝐹 (𝑥𝑘𝑗) ⇀ 𝐹 (𝑥∞), 𝑢̄𝑘𝑗 ⇀ 𝑢∞.

So, if we denote 𝐹 (𝑥) by 𝑧, by Lemma A3, we can conclude that the cluster point (𝑥∞, 𝑧∞, 𝑢∞) satisfies 0 ∈ 𝑇 (𝑥, 𝑧, 𝑢), establishing
the desired result. Furthermore, the primal cluster point 𝑥∞ solves problem (1). To prove the uniqueness of the weak cluster point,
we adopt a standard approach detailed in [9,29]. □

Remark 3.1. In analyzing the weak convergence of the primal sequence generated by Algorithm 2.1 in real Hilbert spaces, we
leverage Lemmas A1 and A3. Our approach is more self-contained and less convoluted, and can be considered an enhancement
of those presented in [7,12]. This is due to the modular proof that results from the introduction of the characteristic operator
in Lemma A1, as discussed in subsequent works such as [11,35]. The basic idea originates from [12] and the 2017 draft of [8],
independently.

Finally, we note that Algorithm 2.1 is related to the proximal point algorithm [26,29]. Specifically, if we set 𝑛 = 1, 𝜃𝑘 ≡ 1, and 𝐹
and 𝐵 to be zero, the main iterative formula in Algorithm 2.1 reduces to (𝐼 + 𝛼𝑘𝐴)(𝑥𝑘+1) ∋ 𝑥𝑘, 𝑘 = 0, 1,…, which happens to be the
94

proximal point algorithm. Thus, as shown in [16], the sequence generated by Algorithm 2.1 may not converge strongly in general.

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

U

A

m
T
T

L

4. Weak convergence in uniform continuity case

In this section, we analyze convergence properties of the primal sequence and the dual sequence generated by Algorithm 2.2.
nder the weakest possible assumptions, we prove the former’s weak convergence to a solution of the problem (1) above.

First of all, we make the following three assumptions, which are standard in the literature [19,32].

ssumption 4.1. (𝑖) For any 𝑥𝑘𝑖 ∈ dom𝐴𝑖 and 𝑦𝑘𝑖 ∈ dom𝐴𝑖, 𝑖 = 1,… , 𝑛, if the sequences {𝑥𝑘𝑖 } and {𝑦𝑘𝑖 } converge weakly, respectively,
and ‖𝑥𝑘𝑖 − 𝑦𝑘𝑖 ‖ → 0, then ‖𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑦𝑘𝑖)‖ → 0. (𝑖𝑖) 𝑥𝑘𝑖 is always in dom𝐴𝑖 for 𝑖 = 1,… , 𝑛.

Be aware that the first item is slightly different from the one in [32] because we add the assumption on weak convergence of
the sequence {𝑥𝑘𝑖 } and is the same as the one in [19]. It is certainly implied by Lipschitz continuity assumption. As to the second
item, it holds provided that dom𝐴𝑖 = 𝑖.

Lemma 4.1. Assume that 𝐴∶ ⇉  is maximal monotone, and 𝐹 ∶ →  is uniformly continuous and monotone. Assume that 𝑥 ∈
dom𝐴 and (𝑥, 𝑢) is not a solution of 0 ∈ 𝐹 (𝑥) + 𝐴(𝑥) +𝑄∗𝑢. Denote by

𝑥(𝛼) = (𝐼 + 𝛼𝐴)−1(𝑥 − 𝛼(𝐹 (𝑥) +𝑄∗𝑢)).

For any given 𝛼̂ > 0 and 𝑡 ∈ (0, 1) and 𝜏 > 1, it needs finite trials to find out the smallest 𝑗 such that the corresponding 𝛼 = 𝛼̂ 𝑡𝑗 ,
𝑗 = −1, 0, 1,…, satisfies

‖𝑥 − 𝑥(𝛼) − 𝛼(𝐹 (𝑥) − 𝐹 (𝑥(𝛼)))‖2 ≤ 𝜏⟨𝑥 − 𝑥(𝛼), 𝑥 − 𝑥(𝛼) − 𝛼(𝐹 (𝑥) − 𝐹 (𝑥(𝛼)))⟩. (55)

Proof. Assume that the assertion is not valid. Then for every 𝛼 = 𝛼̂ 𝑡𝑗 , 𝑗 = −1, 0, 1,…, we always have

‖𝑥 − 𝑥(𝛼) − 𝛼(𝐹 (𝑥) − 𝐹 (𝑥(𝛼)))‖2 > 𝜏⟨𝑥 − 𝑥(𝛼), 𝑥 − 𝑥(𝛼) − 𝛼(𝐹 (𝑥) − 𝐹 (𝑥(𝛼)))⟩.

So, we further have

(𝜏 − 1)
‖𝑥 − 𝑥(𝛼)‖2

𝛼2

< (𝜏 − 2)⟨
𝑥 − 𝑥(𝛼)

𝛼
, 𝐹 (𝑥) − 𝐹 (𝑥(𝛼))⟩ + ‖𝐹 (𝑥) − 𝐹 (𝑥(𝛼))‖2

≤ |𝜏 − 2|
‖𝑥 − 𝑥(𝛼)‖

𝛼
‖𝐹 (𝑥) − 𝐹 (𝑥(𝛼))‖ + ‖𝐹 (𝑥) − 𝐹 (𝑥(𝛼))‖2. (56)

Since 𝛼 → 0, it follows from (A.2) and uniform continuity of 𝐹 that 𝐹 (𝑥) −𝐹 (𝑥(𝛼)) → 0. Meanwhile, (A.3) tells us that 𝛼−1‖𝑥− 𝑥(𝛼)‖
ust be bounded. Consequently, either term on the right-hand side of (56) tends to zero, so does the term on the left-hand side.
his is to say that 𝛼−1‖𝑥−𝑥(𝛼)‖ → 0 as 𝛼 → 0. On the other hand, we have assumed that 𝑥 is not a solution of 0 ∈ 𝐹 (𝑥)+𝐴(𝑥)+𝑄∗𝑢.
hen, in view of (A.5), 𝛼−1‖𝑥 − 𝑥(𝛼)‖ has a positive lower bound. So, this is a contradiction. □

emma 4.2. Let 𝜌 ∈ (0, 1) is a prescribed real number. In the setting of Lemma 4.1, any positive number satisfying

𝛼‖𝐹 (𝑥) − 𝐹 (𝑥(𝛼))‖ ≤ (1 − 𝜌)‖𝑥 − 𝑥(𝛼)‖

must satisfy (55) and

𝛼⟨𝑥 − 𝑥(𝛼), 𝐹 (𝑥) − 𝐹 (𝑥(𝛼))⟩ ≤ (1 − 𝜌)‖𝑥 − 𝑥(𝛼)‖2.

Proof. Elementary. □

Theorem 4.1. If Assumption 4.1 holds, then 𝛼𝑘 in Algorithm 2.2 is well-defined and can be determined within finite trials, and the resulting
sequence {𝛼𝑘} has an upper bound 𝛼̄.

Proof. In view of (19), we have 𝛼 = 𝛼𝑘−1𝑡𝑗 . Assume that for all 𝑗 the conditions (38) always fail to hold

𝛼⟨𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼), 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖 (𝛼))⟩ > (1 − 𝜌)‖𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼)‖
2

for 𝑖 = 𝑙 + 1,… , 𝑛. Thus, we can get

‖𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖 (𝛼))‖ ≥ ⟨

𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼)

‖𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼)‖
, 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖 (𝛼))⟩ > (1 − 𝜌) 𝛼−1‖𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼)‖.

It follows from Lemma A2 that

lim inf
𝛼→0

𝛼−1‖𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼)‖ = min{‖𝑤‖ ∶𝑤 ∈ 𝐹𝑖(𝑥𝑘𝑖) + 𝐴𝑖(𝑥𝑘𝑖) +𝑄∗
𝑖 𝑢

𝑘}.

Since 𝑥𝑘𝑖 is not a solution to the problem, the closed convex set 𝐹𝑖(𝑥𝑘𝑖) + 𝐴𝑖(𝑥𝑘𝑖) +𝑄∗
𝑖 𝑢

𝑘 will not include the origin. So, we can get

lim inf 𝛼−1‖𝑥𝑘 − 𝑥𝑘(𝛼)‖ > 0.
95

𝛼→0 𝑖 𝑖

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong
Combining this with uniform continuity of 𝐹𝑖 yields a contraction. This implies that, after finite trials, there exists the smallest 𝑗𝑘
such that 𝛼𝑘−1𝑡𝑗𝑘 satisfies (38).

Next, we consider

𝛼 = 𝛼𝑘−1𝑡
𝑗 , 𝑗 ∈ 𝑗𝑘 + {0, 1,…}.

Lemma 4.1 tells us that, after finite trials, there exists the smallest 𝑗𝑘 such that 𝑗𝑘 ∈ 𝑗𝑘 + {0, 1,…} and 𝛼𝑘−1𝑡𝑗𝑘 satisfies (39).
In conclusion, such steplength 𝛼𝑘 is well-defined and can be determined with finite trials.
Certainly, in the cases of each 𝐹𝑖 (𝑖 = 𝑙 + 1,… , 𝑛) being strongly monotone, it follows from (38) that

𝛼𝜇𝐹𝑖‖𝑥
𝑘
𝑖 − 𝑥𝑘𝑖 (𝛼)‖

2 ≤ (1 − 𝜌)‖𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼)‖
2 ⇒ 𝛼 ≤ (1 − 𝜌)∕𝜇𝐹𝑖 .

Thus, the sequence {𝛼𝑘} must be uniformly bounded above as desired. □

Theorem 4.2. Let {𝛾𝑘} be the sequence generated by Algorithm 2.2. If the sequence {𝛽𝑘} is bounded above, then there exists some 𝛾̂ such
that

𝛾𝑘 ≥ 𝛾̂ > 0, 𝑘 = 0, 1, 2,… .

Proof. In this proof, we make use of ∑ to stand for ∑𝑛
𝑖=1. Consider

𝛾𝑘 =

∑

⟨𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 , 𝑑
𝑘
𝑥𝑖
⟩ + ⟨𝑢𝑘 − 𝑢̄𝑘, 𝑑𝑘𝑢 ⟩

∑

‖𝑑𝑘𝑥𝑖‖
2 + ‖𝑑𝑘𝑢 ‖2

.

It follows from (39) and monotonicity of 𝐹𝑖 that

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 − 𝛼𝑘(𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖))‖
2 ≤ 𝜏⟨𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 , 𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖 − 𝛼𝑘(𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖))⟩ ≤ 𝜏‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖

2.

Thus, we get

‖𝑑𝑘𝑥𝑖‖
2 = ‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 − 𝛼𝑘(𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)) − 𝛼𝑘𝑄

∗
𝑖 (𝑢

𝑘 − 𝑢̄𝑘)‖2

≤ (1 + 𝛼2𝑘‖𝑄𝑖‖
2)(‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 − 𝛼𝑘(𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖))‖

2 + ‖𝑢𝑘 − 𝑢̄𝑘‖2)

≤ (1 + 𝛼2𝑘‖𝑄𝑖‖
2)(𝜏‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖

2 + ‖𝑢𝑘 − 𝑢̄𝑘‖2),

‖𝑑𝑘𝑢 ‖
2 = 𝛼2𝑘𝛽

2
𝑘‖𝑢

𝑘 − 𝑢̄𝑘‖2.

So, the denominator ∑

‖𝑑𝑘𝑥𝑖‖
2 + ‖𝑑𝑘𝑢 ‖

2 can be bounded above by

max
1≤𝑖≤𝑛

{1 + 𝛼2𝑘‖𝑄𝑖‖
2}(𝜏

∑

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 + 𝑛‖𝑢𝑘 − 𝑢̄𝑘‖2)

+ 𝛼2𝑘𝛽
2
𝑘‖𝑢

𝑘 − 𝑢̄𝑘‖2

≤ (max
1≤𝑖≤𝑛

{1 + 𝛼2𝑘‖𝑄𝑖‖
2} + 𝛼2𝑘𝛽

2
𝑘)(𝜏

∑

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 + (𝑛 + 1)‖𝑢𝑘 − 𝑢̄𝑘‖2)

≤ (max
1≤𝑖≤𝑛

{1 + 𝛼2𝑘‖𝑄𝑖‖
2} + 𝛼2𝑘𝛽

2
𝑘)(𝜏 + 𝑛 + 1)(

∑

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 + ‖𝑢𝑘 − 𝑢̄𝑘‖2).

As to the numerator,
∑

(

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 − 𝛼𝑘⟨𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖 , 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)⟩

)

−
∑

𝛼𝑘⟨𝑄𝑖(𝑥𝑘𝑖 − 𝑥̄𝑘𝑖), 𝑢
𝑘 − 𝑢̄𝑘⟩ +

∑

𝛼𝑘 𝛽𝑖,𝑘‖𝑢
𝑘 − 𝑢̄𝑘‖2. (57)

Since we have assumed that, for 𝑖 = 1,… , 𝑙, 𝐹𝑖 is further skew-adjoint, we have

⟨𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 , 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)⟩ = 0.

As to 𝑖 = 𝑙 + 1,… , 𝑛, we adopted (38) to get

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 − 𝛼𝑘⟨𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖 , 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)⟩ ≥ 𝜌‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖

2.

Therefore, (57) can be bounded below by the sum of two parts. One is that
∑𝑙

𝑖=1

(

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 − 𝛼𝑘⟨𝑄𝑖(𝑥𝑘𝑖 − 𝑥̄𝑘𝑖), 𝑢

𝑘 − 𝑢̄𝑘⟩ + 𝛼𝑘𝛽𝑖,𝑘‖𝑢
𝑘 − 𝑢̄𝑘‖2

)

. (58)

The other is that
∑𝑛

𝑖=𝑙+1

(

𝜌‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 − 𝛼𝑘⟨𝑄𝑖(𝑥𝑘𝑖 − 𝑥̄𝑘𝑖), 𝑢

𝑘 − 𝑢̄𝑘⟩ + 𝛼𝑘𝛽𝑖,𝑘‖𝑢
𝑘 − 𝑢̄𝑘‖2

)

.

Meanwhile, in view of Lemma A5, (40) and (41), they are bounded below by
1 𝜀

(

∑𝑙
‖𝑥𝑘 − 𝑥̄𝑘‖2 + ‖𝑢𝑘 − 𝑢̄𝑘‖2

)

96

2 𝑖=1 𝑖 𝑖

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

T

D

T

t

P

w

and
1
2
𝜀
(

∑𝑛
𝑖=𝑙+1

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 + ‖𝑢𝑘 − 𝑢̄𝑘‖2

)

,

respectively. So, the numerator must be further bounded below by
1
2
𝜀
(

∑

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 + ‖𝑢𝑘 − 𝑢̄𝑘‖2

)

. (59)

hus, it can be easily seen that the sequence {𝛾𝑘} has a positive lower bound indeed, i.e.,

𝛾𝑘 ≥ 𝜀
2

1
max1≤𝑖≤𝑛{1 + 𝛼2𝑘‖𝑄𝑖‖

2} + 𝛼2𝑘𝛽
2
𝑘

1
𝜏 + 𝑛 + 1

.

enote by

𝛾̂ = 𝜀
2

1
max1≤𝑖≤𝑛{1 + 𝛼̄2‖𝑄𝑖‖

2} + 𝛼̄2𝛽2
1

𝜏 + 𝑛 + 1
,

where 𝛽 is an upper bound of the sequence {𝛽𝑘}, which is well-defined due to boundedness of {𝛼𝑘}. Then the desired result
follows. □

Denote by

𝑤 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑥1
⋮
𝑥𝑛
𝑢

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑑 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑑𝑥1
⋮
𝑑𝑥𝑛
𝑑𝑢

⎞

⎟

⎟

⎟

⎟

⎠

. (60)

heorem 4.3. If Assumption 4.1 holds and
∑+∞

𝑘=0
𝜃𝑘(2 − 𝜃𝑘) = +∞, (61)

hen the involved primal sequence generated by Algorithm 2.2 is weakly convergent.

roof. For simplicity, we will use ∑ to stand for ∑𝑛
𝑖=1. For 𝑖 = 1,… , 𝑛, it follows from (31) that

𝐴𝑖(𝑥̄𝑘𝑖) ∋ 𝛼−1𝑘 (𝑥𝑘𝑖 − 𝑥̄𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖) −𝑄∗
𝑖 𝑢

𝑘, (62)

hich, together with (15), i.e., 𝐴𝑖(𝑥∗𝑖) ∋ −𝐹𝑖(𝑥∗𝑖) −𝑄∗
𝑖 𝑢

∗ and 𝜇𝐴𝑖
-monotonicity of each 𝐴𝑖 and Lemma A4, implies

⟨𝑥𝑘𝑖 − 𝑥∗𝑖 , 𝛼
−1
𝑘 (𝑥𝑘𝑖 − 𝑥̄𝑘𝑖) − (𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖))⟩ − ⟨𝑄𝑖(𝑥̄𝑘𝑖 − 𝑥∗𝑖), 𝑢

𝑘 − 𝑢∗⟩

≥ ⟨𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 , 𝛼
−1
𝑘 (𝑥𝑘𝑖 − 𝑥̄𝑘𝑖) − (𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖))⟩ + (𝜇𝐹𝑖 + 𝜇𝐴𝑖

)‖𝑥̄𝑘𝑖 − 𝑥∗𝑖 ‖
2. (63)

On the other hand, it follows from (32) that

𝐵−1(𝑢̄𝑘) ∋ 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘) +
∑

𝑄𝑖𝑥̄
𝑘
𝑖 − 𝑞, (64)

which, together with 𝐵−1(𝑢∗) ∋
∑

𝑄𝑖𝑥∗𝑖 − 𝑞 and monotonicity of 𝐵−1, implies

0 ≤ ⟨𝑢̄𝑘 − 𝑢∗, 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘) +
∑

𝑄𝑖(𝑥̄𝑘𝑖 − 𝑥∗𝑖)⟩ = ⟨𝑢̄𝑘 − 𝑢∗, 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘)⟩ + ⟨

∑

𝑄𝑖(𝑥̄𝑘𝑖 − 𝑥∗𝑖), 𝑢̄
𝑘 − 𝑢∗⟩.

Therefore

⟨𝑢𝑘 − 𝑢∗, 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘)⟩ + ⟨

∑

𝑄𝑖(𝑥̄𝑘𝑖 − 𝑥∗𝑖), 𝑢̄
𝑘 − 𝑢∗⟩ ≥ 𝛽𝑘‖𝑢

𝑘 − 𝑢̄𝑘‖2. (65)

Consider

− ⟨

∑

𝑄𝑖(𝑥̄𝑘𝑖 − 𝑥∗𝑖), 𝑢
𝑘 − 𝑢∗⟩ + ⟨

∑

𝑄𝑖(𝑥̄𝑘𝑖 − 𝑥∗𝑖), 𝑢̄
𝑘 − 𝑢∗⟩

= −
∑

⟨𝑥̄𝑘𝑖 − 𝑥∗𝑖 , 𝑄
∗
𝑖 (𝑢

𝑘 − 𝑢̄𝑘)⟩

= −
∑

⟨𝑥𝑘𝑖 − 𝑥∗𝑖 , 𝑄
∗
𝑖 (𝑢

𝑘 − 𝑢̄𝑘)⟩ +
∑

⟨𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 , 𝑄
∗
𝑖 (𝑢

𝑘 − 𝑢̄𝑘)⟩.

Thus, by adding (65) to (63), we can get
∑

⟨𝑥𝑘𝑖 − 𝑥∗𝑖 , 𝛼
−1
𝑘 (𝑥𝑘𝑖 − 𝑥̄𝑘𝑖) − (𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)) −𝑄∗

𝑖 (𝑢
𝑘 − 𝑢̄𝑘)⟩

+ ⟨𝑢𝑘 − 𝑢∗, 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘)⟩

≥
∑

⟨𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 , 𝛼
−1
𝑘 (𝑥𝑘𝑖 − 𝑥̄𝑘𝑖) − (𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)) −𝑄∗

𝑖 (𝑢
𝑘 − 𝑢̄𝑘)⟩

+ 𝛽𝑘‖𝑢
𝑘 − 𝑢̄𝑘‖2 +

∑

(𝜇𝐹𝑖 + 𝜇𝐴𝑖
)‖𝑥̄𝑘𝑖 − 𝑥∗𝑖 ‖

2

=
∑

𝛼−1𝑘
(

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 − 𝛼𝑘⟨𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖 , 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)⟩

)

∑

𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 2
∑

𝑘 ∗ 2
97

− ⟨𝑄𝑖(𝑥𝑖 − 𝑥̄𝑖), 𝑢 − 𝑢̄ ⟩ + 𝛽𝑘‖𝑢 − 𝑢̄ ‖ + (𝜇𝐹𝑖 + 𝜇𝐴𝑖
)‖𝑥̄𝑖 − 𝑥𝑖 ‖ ,

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

S

which, together with 𝛼𝑘 > 0 and 𝛽𝑘 =
∑

𝛽𝑖,𝑘, yields
∑

⟨𝑥𝑘𝑖 − 𝑥∗𝑖 , 𝑥
𝑘
𝑖 − 𝑥̄𝑘𝑖 − 𝛼𝑘(𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)) − 𝛼𝑘𝑄

∗
𝑖 (𝑢

𝑘 − 𝑢̄𝑘)⟩

+ ⟨𝑢𝑘 − 𝑢∗, 𝛼𝑘𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘)⟩

≥
∑

(

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 − 𝛼𝑘⟨𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖 , 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)⟩

)

−
∑

𝛼𝑘⟨𝑄𝑖(𝑥𝑘𝑖 − 𝑥̄𝑘𝑖), 𝑢
𝑘 − 𝑢̄𝑘⟩ +

∑

𝛼𝑘 𝛽𝑖,𝑘‖𝑢
𝑘 − 𝑢̄𝑘‖2 +

∑

𝛼𝑘(𝜇𝐹𝑖 + 𝜇𝐴𝑖
)‖𝑥̄𝑘𝑖 − 𝑥∗𝑖 ‖

2.

Thus, in view of discussions from (57) to (59),
∑

(

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 − 𝛼𝑘⟨𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖 , 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)⟩

)

−
∑

𝛼𝑘⟨𝑄𝑖(𝑥𝑘𝑖 − 𝑥̄𝑘𝑖), 𝑢
𝑘 − 𝑢̄𝑘⟩ +

∑

𝛼𝑘 𝛽𝑖,𝑘‖𝑢
𝑘 − 𝑢̄𝑘‖2

≥ 1
2
𝜀
(

∑

‖𝑥𝑘𝑖 − 𝑥̄𝑘𝑖 ‖
2 + ‖𝑢𝑘 − 𝑢̄𝑘‖2

)

.

These relations show that

⟨𝑤𝑘 −𝑤∗, 𝑑𝑘⟩ ≥ ⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩ +
∑

𝛼𝑘(𝜇𝐹𝑖 + 𝜇𝐴𝑖
)‖𝑥̄𝑘𝑖 − 𝑥∗𝑖 ‖

2 ≥ 1
2
𝜀‖𝑤𝑘 − 𝑤̄𝑘

‖

2 +
∑

𝛼𝑘(𝜇𝐹𝑖 + 𝜇𝐴𝑖
)‖𝑥̄𝑘𝑖 − 𝑥∗𝑖 ‖

2.

o, according to this relation, (36) and (37), we get

‖𝑤𝑘+1 −𝑤∗
‖

2

≤ ‖𝑤𝑘 −𝑤∗ − 𝜃𝑘𝛾𝑘𝑑
𝑘
‖

2

= ‖𝑤𝑘 −𝑤∗
‖

2 − 2𝜃𝑘𝛾𝑘⟨𝑤𝑘 −𝑤∗, 𝑑𝑘⟩ + 𝜃2𝑘 𝛾
2
𝑘 ‖𝑑

𝑘
‖

2

≤ ‖𝑤𝑘 −𝑤∗
‖

2 − 2𝜃𝑘𝛾𝑘⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩ + 𝜃2𝑘 𝛾
2
𝑘 ‖𝑑

𝑘
‖

2 − 2𝜃𝑘𝛾𝑘
∑

𝛼𝑘(𝜇𝐹𝑖 + 𝜇𝐴𝑖
)‖𝑥̄𝑘𝑖 − 𝑥∗𝑖 ‖

2,

where the first inequality follows from non-expansiveness of projection operator. Combining this with (35), i.e., 𝛾𝑘 = ⟨𝑤𝑘 −
𝑤̄𝑘, 𝑑𝑘⟩∕‖𝑑𝑘‖2 yields

‖𝑤𝑘+1 −𝑤∗
‖

2

≤ ‖𝑤𝑘 −𝑤∗
‖

2 − 𝜃𝑘(2 − 𝜃𝑘)
(

⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩∕‖𝑑𝑘‖2
)

⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩ − 2𝜃𝑘𝛾𝑘
∑

𝛼𝑘(𝜇𝐹𝑖 + 𝜇𝐴𝑖
)‖𝑥̄𝑘𝑖 − 𝑥∗𝑖 ‖

2

= ‖𝑤𝑘 −𝑤∗
‖

2 − 𝜃𝑘(2 − 𝜃𝑘)𝛾𝑘⟨𝑤𝑘 − 𝑤̄𝑘, 𝑑𝑘⟩ − 2𝜃𝑘𝛾𝑘
∑

𝛼𝑘(𝜇𝐹𝑖 + 𝜇𝐴𝑖
)‖𝑥̄𝑘𝑖 − 𝑥∗𝑖 ‖

2

≤ ‖𝑤𝑘 −𝑤∗
‖

2 − 𝜃𝑘(2 − 𝜃𝑘)𝛾𝑘
1
2
𝜀‖𝑤𝑘 − 𝑤̄𝑘

‖

2 − 2𝜃𝑘𝛾𝑘
∑

𝛼𝑘(𝜇𝐹𝑖 + 𝜇𝐴𝑖
)‖𝑥̄𝑘𝑖 − 𝑥∗𝑖 ‖

2.

So, it follows from Theorem 4.2 that

‖𝑤𝑘+1 −𝑤∗
‖

2 ≤ ‖𝑤𝑘 −𝑤∗
‖

2 − 𝜃𝑘(2 − 𝜃𝑘)𝛾̂
1
2
𝜀‖𝑤𝑘 − 𝑤̄𝑘

‖

2 − 2𝜃𝑘𝛾̂
∑

𝛼𝑘(𝜇𝐹𝑖 + 𝜇𝐴𝑖
)‖𝑥̄𝑘𝑖 − 𝑥∗𝑖 ‖

2. (66)

We can conclude that: (a) The limit of the sequence {‖𝑤𝑘−𝑤∗
‖} exists and {𝑤𝑘} is bounded in norm; (b) The condition (61) implies

that {‖𝑤𝑘 − 𝑤̄𝑘
‖} has some subsequence, say {‖𝑤𝑘𝑗 − 𝑤̄𝑘𝑗

‖}, which converges to zero. It can be easily seen that

(𝑖) 𝑥
𝑘𝑗
𝑖 − 𝑥̄

𝑘𝑗
𝑖 → 0, 𝑖 = 1,… , 𝑛, 𝑢𝑘𝑗 − 𝑢̄𝑘𝑗 → 0; (67)

(𝑖𝑖) {𝑥
𝑘𝑗
𝑖 }, 𝑖 = 1,… , 𝑛, {𝑢𝑘𝑗 } are bounded in norm, (68)

It follows from (68) that {(𝑥𝑘𝑗𝑖 , 𝑢𝑘𝑗)} has some subsequence that converges weakly. In addition, 𝛼𝑘𝑗 is bounded as well. Without loss
of generality, we assume that

𝑥𝑘𝑗 ⇀ 𝑥∞, 𝑢𝑘𝑗 ⇀ 𝑢∞, 𝛼𝑘𝑗 → 𝛼∞.

Meanwhile, in view of (67), we also have

𝑥̄𝑘𝑗 ⇀ 𝑥∞, 𝑢̄𝑘𝑗 ⇀ 𝑢∞.

Next, we will make use of Lemma A3 to prove the remaining part. To this end, we follow the definition of the set 𝑇 to get

𝑇 (𝑥̄𝑘, 𝐹 (𝑥𝑘), 𝑢̄𝑘) ∋

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

𝐴1(𝑥̄𝑘1) + 𝐹1(𝑥𝑘1) +𝑄∗
1 𝑢̄

𝑘

⋮

𝐴𝑛(𝑥̄𝑘𝑛) + 𝐹𝑛(𝑥𝑘𝑛) +𝑄∗
𝑛 𝑢̄

𝑘

𝑥𝑘1 − 𝑥̄𝑘1
⋮

𝑥𝑘𝑛 − 𝑥̄𝑘𝑛
−1 𝑘 ∑𝑛 𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

.

98

⎝𝐵 (𝑢̄) − 𝑖=1𝑄𝑖𝑥̄𝑖 + 𝑞⎠

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong
The inclusion relation above is also true for 𝑘𝑗 ,

𝑇 (𝑥̄𝑘𝑗 , 𝐹 (𝑥𝑘𝑗), 𝑢̄𝑘𝑗) ∋

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴1(𝑥̄
𝑘𝑗
1) + 𝐹1(𝑥

𝑘𝑗
1) +𝑄∗

1 𝑢̄
𝑘𝑗

⋮

𝐴𝑛(𝑥̄
𝑘𝑗
𝑛) + 𝐹𝑛(𝑥

𝑘𝑗
𝑛) +𝑄∗

𝑛 𝑢̄
𝑘𝑗

𝑥
𝑘𝑗
1 − 𝑥̄

𝑘𝑗
1

⋮

𝑥
𝑘𝑗
𝑛 − 𝑥̄

𝑘𝑗
𝑛

𝐵−1(𝑢̄𝑘𝑗) −
∑𝑛

𝑖=1𝑄𝑖𝑥̄
𝑘𝑗
𝑖 + 𝑞

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Combining this with (62) and (64) yields

𝑇 (𝑥̄𝑘𝑗 , 𝐹 (𝑥𝑘𝑗), 𝑢̄𝑘𝑗) ∋

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛼−1𝑘𝑗 (𝑥
𝑘𝑗
1 − 𝑥̄

𝑘𝑗
1) −𝑄∗

1(𝑢
𝑘𝑗 − 𝑢̄𝑘𝑗)

⋮

𝛼−1𝑘𝑗 (𝑥
𝑘𝑗
𝑛 − 𝑥̄

𝑘𝑗
𝑛) −𝑄∗

𝑛(𝑢
𝑘𝑗 − 𝑢̄𝑘𝑗)

𝑥
𝑘𝑗
1 − 𝑥̄

𝑘𝑗
1

⋮

𝑥
𝑘𝑗
𝑛 − 𝑥̄

𝑘𝑗
𝑛

𝛽𝑘(𝑢
𝑘𝑗 − 𝑢̄𝑘𝑗)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (69)

To invoke Lemma A3, we first consider all the terms on the right-hand side of (69).
Case 1. 𝛼∞ > 0. In this case, we certainly have

𝛼𝑘𝑗 > 0, 𝛼∞ > 0, 𝑥
𝑘𝑗
𝑖 − 𝑥̄

𝑘𝑗
𝑖 → 0 ⇒ 𝛼−1𝑘𝑗 (𝑥

𝑘𝑗
𝑖 − 𝑥̄

𝑘𝑗
𝑖) → 0.

Case 2. 𝛼∞ = 0. Note that our choice of 𝛼𝑘𝑗 implies that (38) and (39) fail to hold simultaneously for 𝛼̄𝑘𝑗 = 𝑡−1𝛼𝑘𝑗 , if 𝑘𝑗 is large
enough. Thus, we get either

(1 − 𝜌) ‖𝑥
𝑘𝑗
𝑖 − 𝑥

𝑘𝑗
𝑖 (𝛼̄𝑘𝑗)‖

2 < 𝛼̄𝑘𝑗 ⟨𝑥
𝑘𝑗
𝑖 − 𝑥

𝑘𝑗
𝑖 (𝛼̄𝑘𝑗), 𝐹𝑖(𝑥

𝑘𝑗
𝑖) − 𝐹𝑖(𝑥

𝑘𝑗
𝑖 (𝛼̄𝑘𝑗))⟩

or

‖𝑥
𝑘𝑗
𝑖 − 𝑥

𝑘𝑗
𝑖 (𝛼̄𝑘𝑗) − 𝛼̄𝑘𝑗 (𝐹 (𝑥

𝑘𝑗
𝑖) − 𝐹 (𝑥

𝑘𝑗
𝑖 (𝛼̄𝑘𝑗)))‖

2 > 𝜏 ⟨𝑥
𝑘𝑗
𝑖 − 𝑥

𝑘𝑗
𝑖 (𝛼̄𝑘𝑗), 𝑥

𝑘𝑗
𝑖 − 𝑥

𝑘𝑗
𝑖 (𝛼̄𝑘𝑗) − 𝛼̄𝑘𝑗 (𝐹 (𝑥

𝑘𝑗
𝑖) − 𝐹 (𝑥

𝑘𝑗
𝑖 (𝛼̄𝑘𝑗)))⟩.

Denote by 𝜑(𝛼) = 𝛼−1‖𝑥
𝑘𝑗
𝑖 − 𝑥

𝑘𝑗
𝑖 (𝛼)‖. By making use of Cauchy–Schwarz inequality, we can further get

(1 − 𝜌)𝜑2(𝛼̄𝑘𝑗) < 𝜑(𝛼̄𝑘𝑗)‖𝐹𝑖(𝑥
𝑘𝑗
𝑖) − 𝐹𝑖(𝑥

𝑘𝑗
𝑖 (𝛼̄𝑘𝑗))‖

and

|𝜏 − 2|𝜑(𝛼̄𝑘𝑗)‖𝐹 (𝑥
𝑘𝑗
𝑖) − 𝐹 (𝑥

𝑘𝑗
𝑖 (𝛼̄𝑘𝑗))‖ + ‖𝐹 (𝑥

𝑘𝑗
𝑖) − 𝐹 (𝑥

𝑘𝑗
𝑖 (𝛼̄𝑘𝑗))‖

2 > (𝜏 − 1)𝜑2(𝛼̄𝑘𝑗),

respectively. Note that the discussion of the latter’s inequality is similar to that of (56). In either subcase, we confirm that
𝜑(𝛼̄𝑘𝑗) → 0 as 𝛼𝑘𝑗 → 0, since 𝜑(𝛼̄𝑘𝑗) is bounded and 𝐹𝑖(𝑥

𝑘𝑗
𝑖) − 𝐹𝑖(𝑥

𝑘𝑗
𝑖 (𝛼̄𝑘𝑗)) → 0 (the latter is implied by uniform continuity of 𝐹𝑖

and 𝑥
𝑘𝑗
𝑖 − 𝑥

𝑘𝑗
𝑖 (𝛼̄𝑘𝑗) → 0). On the other hand, it follows from the properties (A.4) that 𝜑(𝛼𝑘𝑗) ≤ 𝑡−1𝜑(𝛼̄𝑘𝑗). Therefore, we have

𝜑(𝛼𝑘𝑗) → 0 ⇒ 𝛼−1𝑘𝑗 (𝑥
𝑘𝑗
𝑖 − 𝑥̄

𝑘𝑗
𝑖) → 0, as 𝛼𝑘𝑗 → 0.

Since 𝛽𝑘, 𝑄∗
𝑖 (𝑖 = 1,… , 𝑛) and (67) are bounded, each term on the right-hand side of (69) strongly converges to zero. Moreover, by

the assumption and continuity of 𝐹 , we have

𝑥̄𝑘𝑗 ⇀ 𝑥∞, 𝐹 (𝑥𝑘𝑗) ⇀ 𝐹 (𝑥∞), 𝑢̄𝑘𝑗 ⇀ 𝑢∞,

where the notation ⇀ stands for weak convergence. Denoting 𝐹 (𝑥) by 𝑧, it follows from Lemma A3 that this cluster point (𝑥∞, 𝑧∞, 𝑢∞)
solves 0 ∈ 𝑇 (𝑥, 𝑧, 𝑢) as desired and the primal cluster point 𝑥∞ solves the problem (1) as well. The proof of uniqueness of weak cluster
point is standard, see [9,29] for more details. □

5. The dual-first version of Algorithm 2.1

As we know, Algorithm 2.1 first computes the primal intermediate point 𝑥̄𝑘 then the dual intermediate point 𝑢̄𝑘 at each iteration.
In this section, we describe its dual-first version. This means that it first computes the dual intermediate point then the primal
99

intermediate point at each iteration. For convenience, the dual-first version of Algorithm 2.1 is called Algorithm 5.1 from now on.

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

T

a

o

w

A

Algorithm 5.1. The dual-first version of Algorithm 2.1

Step 0. For 𝑖 = 1,… , 𝑛, choose 𝑥0𝑖 ∈ 𝑖, 𝑢0 ∈ , 𝑡 ∈ (0, 1), 𝜌 ∈ (0, 1) and 𝛼𝑖,−1 > 0. Set 𝑘 ∶= 0.
Step 1. Choose 𝛽𝑘 > 0 and find 𝑢̄𝑘 such that

(

𝛽𝑘𝐼 + 𝐵−1) (𝑢̄𝑘) ∋ 𝛽𝑘𝑢
𝑘 +

∑𝑛
𝑖=1

𝑄𝑖𝑥
𝑘
𝑖 − 𝑞.

Step 2. For 𝑖 = 1,… , 𝑙, choose appropriate 𝛼𝑖,𝑘 > 0. For 𝑖 = 𝑙 + 1,… , 𝑛, find the smallest 𝑗𝑘 in (19) such that

𝑥𝑘𝑖 (𝛼𝑖) = (𝐼 + 𝛼𝑖𝐴𝑖)−1(𝑥𝑘𝑖 − 𝛼𝑖(𝐹𝑖(𝑥𝑘𝑖) +𝑄∗
𝑖 𝑢̄

𝑘))

satisfies

𝛼𝑖⟨𝑥
𝑘
𝑖 − 𝑥𝑘𝑖 (𝛼𝑖), 𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥𝑘𝑖 (𝛼𝑖))⟩ ≤ (1 − 𝜌)‖𝑥𝑘𝑖 − 𝑥𝑘𝑖 (𝛼𝑖)‖

2. (70)

Take 𝛼𝑖,𝑘 = 𝛼𝑖,𝑘−1𝑡𝑗𝑘 , and compute 𝑥̄𝑘𝑖 = 𝑥𝑘𝑖 (𝛼𝑖,𝑘). If 𝑥̄𝑘𝑖 = 𝑥𝑘𝑖 , 𝑖 = 1,… , 𝑛, and 𝑢̄𝑘 = 𝑢𝑘, then stop. Otherwise go to Step 3.
Step 3. Compute

𝑑𝑘𝑥𝑖 = 𝛼−1𝑖,𝑘 (𝑥
𝑘
𝑖 − 𝑥̄𝑘𝑖) − (𝐹𝑖(𝑥𝑘𝑖) − 𝐹𝑖(𝑥̄𝑘𝑖)), 𝑖 = 1,… , 𝑛,

𝑑𝑘𝑢 = 𝛽𝑘(𝑢𝑘 − 𝑢̄𝑘) +
∑𝑛

𝑖=1
𝑄𝑖(𝑥𝑘𝑖 − 𝑥̄𝑘𝑖),

𝛾𝑘 =

∑𝑛
𝑖=1⟨𝑥

𝑘
𝑖 − 𝑥̄𝑘𝑖 , 𝑑

𝑘
𝑥𝑖
⟩ + ⟨𝑢𝑘 − 𝑢̄𝑘, 𝑑𝑘𝑢 ⟩

∑𝑛
𝑖=1‖𝑑𝑘𝑥𝑖‖

2 + ‖𝑑𝑘𝑢 ‖2
.

Choose 𝜃𝑘 ∈ (0, 2]. Compute

𝑥𝑘+1𝑖 = 𝑥𝑘𝑖 − 𝜃𝑘𝛾𝑘𝑑
𝑘
𝑥𝑖
, 𝑖 = 1,… , 𝑛, 𝑢𝑘+1 = 𝑢𝑘 − 𝜃𝑘𝛾𝑘𝑑

𝑘
𝑢 .

Set 𝑘 ∶= 𝑘 + 1, and go to Step 1.

As to the 𝛽𝑘, formally we choose it via the same way as (29).

heorem 5.1. If Assumption 2.1 holds and ∑

𝑘𝜃𝑘(2 − 𝜃𝑘) = +∞, then Algorithm 5.1 is weakly convergent.

Notice that the dual-first version of Algorithm 2.2 can be similarly derived and the associated weak convergence can be similarly
nalyzed, thus we omit it here.

Be aware that, generally speaking, Algorithm 5.1 may have the difficulty in implementing (70). This is because that 𝑥𝑘𝑖 (𝛼𝑖) relies
n 𝑢̄𝑘 whereas the latter is related to 𝛽𝑘. So, it seems somewhat impractical to choose appropriate 𝛽𝑘.

However, Algorithm 5.1 is well-suited for finding an 𝑥 ∈  such that

0 ∈ 𝐹 (𝑥) + 𝐴(𝑥) +𝑄∗𝐵 (𝑄𝑥 − 𝑞) ,

here 𝐹 is further assumed to be bounded linear and skew-adjoint. The resulting algorithm is the following

lgorithm 5.2. A special case of Algorithm 5.1

Step 0. Choose 𝑥0 ∈ , 𝑢0 ∈ . Choose 𝛼 > 0 and 𝛽 via (73). Set 𝑘 ∶= 0.
Step 1. Find 𝑢̄𝑘 such that

(

𝛽𝐼 + 𝐵−1) (𝑢̄𝑘) ∋ 𝛽𝑢𝑘 +𝑄𝑥𝑘 − 𝑞.

Step 2. Find 𝑥̄𝑘 such that

(𝐼 + 𝛼𝐴) (𝑥̄𝑘) ∋ 𝑥𝑘 − 𝛼(𝐹 (𝑥𝑘) +𝑄∗𝑢̄𝑘).

If 𝑥̄𝑘 = 𝑥𝑘 and 𝑢̄𝑘 = 𝑢𝑘, then stop. Otherwise go to Step 3.
Step 3. Compute

𝑑𝑘𝑥 = 𝛼−1(𝑥𝑘 − 𝑥̄𝑘) − (𝐹 (𝑥𝑘) − 𝐹 (𝑥̄𝑘)),

𝑑𝑘𝑢 = 𝛽(𝑢𝑘 − 𝑢̄𝑘) +𝑄(𝑥𝑘 − 𝑥̄𝑘),

𝛾𝑘 =
⟨𝑥𝑘 − 𝑥̄𝑘, 𝑑𝑘𝑥⟩ + ⟨𝑢𝑘 − 𝑢̄𝑘, 𝑑𝑘𝑢 ⟩

‖𝑑𝑘𝑥‖2 + ‖𝑑𝑘𝑢 ‖2
.

Choose 𝜃𝑘 ∈ (0, 2]. Compute

𝑥𝑘+1 = 𝑥𝑘 − 𝜃𝑘𝛾𝑘𝑑
𝑘
𝑥 , 𝑢𝑘+1 = 𝑢𝑘 − 𝜃𝑘𝛾𝑘𝑑

𝑘
𝑢 .

Set 𝑘 ∶= 𝑘 + 1, and go to Step 1.
100

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

7

t

7

6. Applications to convex minimization

In this section, we briefly discuss how to apply Algorithms 2.1, 2.2 and 5.1 to solving convex minimization.
A first application is to the separable convex minimization

minimize
∑𝑛

𝑖=1
(𝑓𝑖 + 𝑔𝑖)(𝑥𝑖), subject to

∑𝑛
𝑖=1

𝑄𝑖𝑥𝑖 − 𝑞 ∈  , (71)

where 𝑓𝑖, 𝑔𝑖 ∶𝑖 →  are closed proper convex functions, 𝑓𝑖 are further assumed to be continuously differentiable with the gradient
∇𝑓𝑖, and  is a nonempty closed convex set, onto which it is easy to project, say the first orthant or a ball. This problem can be
rewritten as

minimize
∑𝑛

𝑖=1
(𝑓𝑖 + 𝑔𝑖)(𝑥𝑖) + 𝛿

(

∑𝑛
𝑖=1

𝑄𝑖𝑥𝑖 − 𝑞
)

.

Under suitable assumptions, its optimal conditions are the following system of monotone inclusions

0 ∈ ∇𝑓𝑖(𝑥𝑖) + 𝜕𝑔𝑖(𝑥𝑖) +𝑄∗
𝑖 𝜕𝛿

(

∑𝑛
𝑖=1

𝑄𝑖𝑥𝑖 − 𝑞
)

, 𝑖 = 1,… , 𝑛.

This corresponds to (1) with 𝐹𝑖 = ∇𝑓𝑖, 𝐴𝑖 = 𝜕𝑔𝑖 and 𝐵 = 𝜕𝛿 respectively.
A second application is to the following convex minimization

minimize 𝑓 (𝑥) + 𝑔(𝑥) −
∑𝑝

𝑖=1 ln 𝑥𝑖 − ln(1 − ⟨𝑒, 𝑥⟩),

where 𝑓 ∶𝑝 →  is a continuously differentiable convex function with the gradient ∇𝑓 , and 𝑔 ∶𝑝 →  is a closed proper convex
function, and 𝑒 is a 𝑝-dimensional vector of all ones. Additionally, we assume that the set  = {𝑥 ∈ 𝑝 ∶ 𝑥 ≥ 0, ⟨𝑒, 𝑥⟩ ≤ 1} is included
in both dom𝑓 and dom𝑔.

Under suitable assumptions, its optimal condition reads

0 ∈ ∇𝑓 (𝑥) + 𝜕𝑔(𝑥) +𝑄𝑇𝐵 (𝑄𝑥 − 𝑞) .

This corresponds to (1) with 𝑛 = 1, 𝐹 = ∇𝑓 , 𝐴 = 𝜕𝑔 and

𝐵(𝑧) = −diag
[

1
𝑧1

,… , 1
𝑧𝑝+1

]

, 𝑄 =

(

𝐼𝑝
−𝑒𝑇

)

, 𝑞 = (0,… , 0,−1)𝑇 ,

respectively, where 𝐼𝑝 is the identity matrix. Obviously, 𝐵 is continuous and monotone, thus maximal monotone, in its effective
domain {𝑧 ∈ 𝑝+1 ∶ 𝑧𝑖 > 0, 𝑖 = 1,… , 𝑝 + 1}.

. Implementation details

In this section, we discuss some key implementation details of the aforementioned splitting methods so as to assure and improve
heir individual easiness and efficiency in practice.

.1. How to choose beta

Let

𝛽𝑖,𝑘(𝜀; 𝑡) =
2 𝑡 𝜀 − 𝜀2 + 𝛼2𝑖,𝑘‖𝑄𝑖‖1‖𝑄𝑖‖∞

2 (2 𝑡 − 𝜀)𝛼𝑖,𝑘
= 𝜀

2𝛼𝑖,𝑘
+

𝛼𝑖,𝑘‖𝑄𝑖‖1‖𝑄𝑖‖∞

2 (2 𝑡 − 𝜀)
,

where 𝑡 > 0 is given. The function 𝛽 here is increasing with respect to 𝜀 ∈ (0, 2 𝑡).
For Algorithms 2.1 and 2.2, we choose 𝛽𝑘 via

𝛽𝑘 =
∑𝑛

𝑖=1
𝛽𝑖,𝑘

=
∑𝑙

𝑖=1
max{𝛽𝑖,𝑘(𝜀; 1), 𝛼𝑖,𝑘} +

∑𝑛
𝑖=𝑙+1

max{𝛽𝑖,𝑘(𝜀; 𝜌), 𝛼𝑖,𝑘}. (72)

For Algorithm 5.2, we choose 𝛽 via

𝛽 = max{𝛽(𝜀; 1), 𝛼}, (73)

where 𝜀 > 0 is sufficiently small, say 𝜀 = 10−9, even smaller.

7.2. How to adapt Q

If 𝑛 = 1, then the problem (71) reduces to

minimize 𝑓 (𝑥) + 𝑔(𝑥), subject to 𝑄𝑥 = 𝑞.

In this case, we check if
√

‖𝑄‖1‖𝑄‖∞ < 2 is satisfied. If not, we adapt
√

‖𝑄‖ ‖𝑄‖ .
101

(𝑄, 𝑞) ← (𝑄, 𝑞)∕ 1 ∞

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong
7.3. How to solve subproblem

In these algorithms above, there is one type of sub-problem (𝐼 + 𝛼𝐴)(𝑥) ∋ 𝑤. Now we discuss how to solve it. (i) If 𝐴 is further
linear, then we may use Matlab solver via

𝑥 = (𝐼 + 𝛼𝐴) ⧵𝑤.

(ii) If 𝐴 = ∇𝑓 is the gradient of some continuously differentiable convex function 𝑓 , then we may resort to quasi-Newton method
with novel conditions using solely gradient to locate steplength; see [34, Sect. 5.3]. (iii) If 𝐴 = 𝐹 is continuously differentiable, then
we may use some Newton-type method to solve this sub-problem.

The other type of sub-problem is
(

𝛽𝐼 + 𝐵−1) (𝑢) ∋ 𝑝. We may solve it directly. Of course, if it is easier to evaluate the resolvent
of 𝐵, we instead consider Moreau identity

(

𝛽𝐼 + 𝐵−1)−1 ≡ 𝛽−1𝐼 − 𝛽−1 (𝐼 + 𝛽𝐵)−1 , ∀𝛽 > 0.

Thus, the process of solving this sub-problem can be divided into

𝑝̃ = (𝐼 + 𝛽𝐵)−1(𝑝), 𝑢 = 𝛽−1(𝑝 − 𝑝̃).

7.4. How to deal with (39) in Algorithm 2.2

Upon reviewing the convergence proofs of Algorithm 2.2, we observed that (38) and (39) serve different purposes. The
former ensures monotone decrease in ‖𝑤𝑘 −𝑤∗

‖, while the latter’s significance lies in providing a theoretically rigorous proof of
convergence for Algorithm 2.2. Consequently, (39) may no longer be necessary in practice, as Algorithm 2.2 often performs well
for the first several hundred iterations (assuming it performs well at all).

8. Rudimentary experiments

In this section, we confirmed the effectiveness of our proposed splitting algorithms. In our writing style, rather than striving for
maximal test problems, we tried to make the basic ideas and techniques as clear as possible.

We performed all numerical experiments on a desktop computer equipped with a 3.00 GHz Intel(R) Core(TM) i5-7400 CPU and
8.00 GB of memory. The MATLAB R2020a platform was used as the implementation environment.

We compared our proposed splitting algorithms with other state-of-the-art splitting algorithms, selected for their similarities in
features, applicability, and implementation effort.

Our first test problem is from [7], which is to find an 𝑥 ∈ 𝑚 such that

0 ∈ 𝐷𝑥 − 𝑑 +𝑄∗𝜕𝛿 (𝑄𝑥 − 𝑞),

where

𝐷 = tridiag (−1 − ℎ, 4 + 2ℎ,−1), ℎ = 1∕(𝑚 + 1),

and

𝑄 = [𝑒𝑦𝑒(𝑚); (−1∕𝑚) ∗ 𝑜𝑛𝑒𝑠(1, 𝑚)]; 𝑞 = [𝑧𝑒𝑟𝑜𝑠(𝑚, 1); −1∕𝑚]

and  ⊆ 𝑚+1 is the first orthant. To ensure that 𝑒1 = (1, 0,… , 0)𝑇 solves it, we set 𝑑 = 𝐷𝑒1 in our practical implements. Thus, the
problem’s unique solution is 𝑥∗ = 𝑒1. We chose

𝐹 = 0.5(𝐷 −𝐷𝑇), 𝐴(𝑥) = 0.5(𝐷 +𝐷𝑇)𝑥 − 𝑑, 𝐵 = 𝜕𝛿

to match the problem (1), and we chose 𝑥0 = (0,… , 0)𝑇 as the starting point, as done in [7].
We chose this particular problem because it features the constraint set (given by a general half-space and the first orthant) onto

which it is easy to project individually, but whose intersection poses a more difficult projection problem. This property makes it
relatively tricky to apply some splitting methods such as those [10,21] as they cannot fully split the problem and thus have to
perform an extra and nontrivial projection per iteration.

In practical implementations, we set 𝑚 = 1000. In this case, we via Matlab got
1
4
‖𝑄‖1‖𝑄‖∞ ≈ 0.2508, 1

4
‖𝑄‖

2 ≈ 0.2503.

VC splitting: A splitting method of Vu [33] and Condat [2], also described in [8, Algorithm 6]. We implemented it in the same
way as [8].

ES1: An extended splitting method recently proposed in [7]. We implemented it in the same way as [7].
JE splitting: A splitting method of Johnstone and Eckstein, whose parameters, suggested in [23], were

𝜌 = 1, 𝜌 = 𝜌 ≡ 1, 𝛥 = 1, 𝛾 = 10.
102

3,0 1,𝑘 2,𝑘

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

M

Fig. 1. Numerical results on the first test problem.

oreover, we set 𝐺1 = 𝑄, 𝐺2 = 𝑒𝑦𝑒(𝑚), 𝑧1 = 𝑧𝑒𝑟𝑜𝑠(𝑚, 1) and

𝑤1
1 = 𝑧𝑒𝑟𝑜𝑠(𝑚 + 1, 1), 𝑤1

2 = 𝑧𝑒𝑟𝑜𝑠(𝑚, 1), 𝑤1
3 = −𝐺𝑇

1 𝑤
1
1 − 𝐺𝑇

2 𝑤
1
2.

ES2: An extended splitting method recently proposed in [8]. We implemented it in the same way as [8].
Notice that, for the following four algorithms, we chose

𝛼 ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

to be close to 1∕𝑝 ≈ 0.25, with 𝑝 = trace(0.5(𝐷 +𝐷𝑇))∕𝑚.
Algorithm 2.1: We chose 𝛼 = 0.6 and 𝜃𝑘 ≡ 𝜃 = 1.0, and we chose 𝛽 via (73), with 𝜀 = 10−9, i.e., 𝛽 = 𝛼.
Algorithm 2.2: We chose 𝛼 = 0.5, and we chose 𝜃𝑘 and 𝛽 in the same as those in Algorithm 2.1.
Algorithm 5.2: We chose 𝛼, 𝜃𝑘 and 𝛽 in the same as those in Algorithm 2.2.
pd2003: A primal–dual splitting method described in (11). We chose 𝛼 = 0.5 and 𝜃𝑘 ≡ 𝜃 = 1.8.
For the last four algorithms above, we set 𝑥0 = 𝑧𝑒𝑟𝑜𝑠(𝑚, 1) and 𝑢0 = 𝑧𝑒𝑟𝑜𝑠(𝑚 + 1, 1).
Numerical results on the first test problem were given in Figs. 1–2. From Fig. 1, we can see convergence behaviors of these eight

different algorithms in the first 120 iterations. From Fig. 2, we can see that ES1, Algorithms 2.1 and 2.2 (in the 𝑛 = 1 case) achieved
the accuracy 10−8, respectively. Furthermore, Algorithms 2.2 and 5.2 were faster than all the others.

An interesting observation is that {‖𝑥𝑘−𝑥∗‖}, where 𝑥𝑘 is generated by Algorithm 2.2, is not necessarily monotonically decreasing.
This is because that what we have proved in (66) is merely for monotonicity of {‖𝑤𝑘 −𝑤∗

‖}.
Our second test problem is to solve the following monotone inclusion

0 ∈ 𝐹 (𝑥) + 𝐴(𝑥) +𝑄∗𝐵(𝑄𝑥 − 𝑞),

where 𝑄 = diag(1,… , 𝑛), 𝑞 = (0,… , 0)𝑇 and

𝐹 (𝑥) = (3
√

𝑥1, 𝑥2,… , 𝑥𝑛)𝑇 , 𝐴 = tridiag(𝑛, 1,−𝑛), 𝐵 = diag(arctan,… , arctan).

Note that such F is uniformly continuous and 𝑥∗=0 is its unique solution. We took 𝑥0 = 1
𝑛 (1, 1,… , 1)𝑇 as the starting point and

‖𝑥𝑘 − 𝑥∗‖ ≤ 𝜖 as the stopping criterion.
Algorithm 2.2: We chose 𝛽𝑘 via (72)

𝛽𝑘 = max{𝛽𝑘(𝜀; 𝜌), 𝛼𝑘}, with 𝜀 = 10−9,

and chose 𝑡 = 0.5, 𝜌 = 0.1 and 𝜃𝑘 ≡ 𝜃 = 1.0. By the way, if we chose 𝜀 = 10−40, we observed the same numerical results.
pd2003: A primal–dual splitting method described in (11). We chose 𝑡 = 0.5, 𝜌 = 0.1, 𝜃𝑘 ≡ 𝜃 = 1.8.
Numerical results on the second test problem were reported in Table 1, where the format ‘‘number of iteration/ CPU time (in

seconds)’’ was used and ‘‘–’’ means failure of the desired accuracy within the first 200 iterations. For Algorithm 2.2, the condition (39)
was no longer applied.

From Table 1, we can see that Algorithm 2.2 was by far faster than pd2003 because the former no longer entails time-consuming
103

computations of 𝐵’s resolvent.

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

H
c
c
W
m
t
p
o
c
t
s
t
t

D

t

A

e
M
p

Fig. 2. Numerical results on the first test problem.

Table 1
Numerical results on the second test problem.
𝜖 Algorithm 𝑛 = 5 𝑛 = 10 𝑛 = 50 𝑛 = 100

10−2 Algo2.2 11/2.655 8/1.953 38/40.23 84/176.2
pd2003 59/13.01 10/6.637 33/75.65 60/250.1

10−3 Algo2.2 28/3.104 27/5.908 141/146.2 145/305.6
pd2003 – – – 93/394.5

10−4 Algo2.2 183/18.87 173/36.51 – –
pd2003 – – – –

9. Conclusions

In this article, we have proposed two new splitting methods for solving systems of three-operator monotone inclusions in real
ilbert spaces, where the third operator is linearly composed. These methods primarily involve evaluating the first operator and
omputing resolvents with respect to the other two operators. Importantly, they fully decouple the third operator from its linear
omposition operator. One of these methods is specifically designed for the case where the first operator is Lipschitz continuous.
e have provided back-tracking techniques to determine appropriate step lengths and also propose a dual-first version of this
ethod. For the other method, which corresponds to a uniformly continuous operator, we have developed innovative back-

racking techniques, incorporating additional conditions to determine step lengths. The weak convergence of either method is
roven using characteristic operator techniques. We also have discussed implementation details to enhance the user-friendliness
f these methods. To validate the efficiency of our proposed splitting methods, including their special cases and variations, we have
onducted numerical experiments and compared their performance with other state-of-the-art methods. The results demonstrated
he effectiveness of our proposed splitting methods in solving test problems. In future work, we plan to further investigate these
plitting methods and propose their variable metric variants, incorporating relative errors as discussed in Ref. [5]. By exploring
hese extensions, we aim to enhance the capabilities and applicability of our proposed splitting methods for solving systems of
hree-operator monotone inclusions.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The author is greatly indebted to the Editor-in-Chief, Professor Laura Gardini, the handling editor and the referees for their
ncouraging words and insightful suggestions, which improve the quality of this article. Special thanks go to Yiyi Li for writing
atlab codes and Yuanyuan Zhang and Mengke Zhu for careful reading of the current version of this manuscript. This work was
104

artially supported by the National Natural Science Foundation of China (12201075).

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

L

u

P

Appendix A

Let 𝐴 ∶ ⇉  be an operator. It is called monotone iff

⟨𝑥 − 𝑥′, 𝑎 − 𝑎′⟩ ≥ 0, ∀(𝑥, 𝑎) ∈ 𝐴, ∀(𝑥′, 𝑎′) ∈ 𝐴;

maximal monotone iff it is monotone and for given 𝑥̂ ∈  and 𝑎̂ ∈  the following implication relation holds

⟨𝑥 − 𝑥̂, 𝑎 − 𝑎̂⟩ ≥ 0, ∀(𝑥, 𝑎) ∈ 𝐴 ⇒ (𝑥̂, 𝑎̂) ∈ 𝐴.

Let 𝐴 ∶ ⇉  be an operator. It is called 𝜇-monotone if there exists some 𝜇 ≥ 0 such that

⟨𝑥 − 𝑥′, 𝑎 − 𝑎′⟩ ≥ 𝜇 ‖𝑥 − 𝑥′‖2, ∀(𝑥, 𝑎) ∈ 𝐴, ∀(𝑥′, 𝑎′) ∈ 𝐴.

If 𝜇 > 0, then it is usually called 𝜇-strongly monotone.
Denote by 𝑥 = (𝑥𝑇1 ,… , 𝑥𝑇𝑛)

𝑇 and

𝐹 =
⎛

⎜

⎜

⎝

𝐹1
⋱

𝐹𝑛

⎞

⎟

⎟

⎠

, 𝐴 =
⎛

⎜

⎜

⎝

𝐴1
⋱

𝐴𝑛

⎞

⎟

⎟

⎠

, 𝑄 = [𝑄1,… , 𝑄𝑛].

Lemma A1 ([8]). For the system of monotone inclusions (1), we introduce the dual variable 𝑢 ∈ . Then

𝑇 (𝑥, 𝑧, 𝑢) =
⎛

⎜

⎜

⎝

𝐴
𝐹−1

𝐵−1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑥
𝑧
𝑢

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

0 𝐼 𝑄∗

−𝐼 0 0
−𝑄 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑥
𝑧
𝑢

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

0
0
𝑞

⎞

⎟

⎟

⎠

(A.1)

must be maximal monotone.

In this article, such 𝑇 is called the characteristic operator or eigenoperator [8,11,35] with respect to the problem (1) above.

emma A2. Let 𝐹 ∶ →  and 𝐴 ∶ ⇉  be maximal monotone. Denote by

𝑥(𝛼) = (𝐼 + 𝛼𝐴)−1(𝑥 − 𝛼𝐹 (𝑥)).

Assume that 𝑥 ∈ dom𝐹 ∩ dom𝐴 and there exists 𝛼̄ such that

𝑥(𝛼) ∈ dom𝐴, ∀𝛼 ∈ (0, 𝛼̄).

Then the following hold

(𝑎) 𝛼 → 0 ⇒ 𝑥 − 𝑥(𝛼) → 0, (A.2)

(𝑏) 𝛼−1‖𝑥 − 𝑥(𝛼)‖ ≤ min{‖𝑤‖ ∶𝑤 ∈ 𝐹 (𝑥) + 𝐴(𝑥)}, (A.3)

(𝑐) lim inf
𝛼→0

𝛼−1‖𝑥 − 𝑥(𝛼)‖ = min{‖𝑤‖ ∶𝑤 ∈ 𝐹 (𝑥) + 𝐴(𝑥)}, (A.4)

(𝑑) 1 ≤ ‖𝑥 − 𝑥(𝛼)‖
‖𝑥 − 𝑥(𝛼′)‖

≤ 𝛼
𝛼′

, ∀ 𝛼′ ∈ (0, 𝛼]. (A.5)

Moreover, if 𝐹 + 𝐴 is maximal monotone on dom𝐹 ∩ dom𝐴, then the minimum on the right-hand side of either (A.3) or (A.4) must be
niquely attainable.

roof. We first prove (A.2) and (A.3). In view of the notation 𝑥(𝛼), we have
𝑥 − 𝑥(𝛼)

𝛼
− 𝐹 (𝑥) ∈ 𝐴(𝑥(𝛼)), 𝛼 > 0,

which, together with 𝑤 − 𝐹 (𝑥) ∈ 𝐴(𝑥) and monotonicity of 𝐴, implies

0 ≤ ⟨𝑥(𝛼) − 𝑥,
𝑥 − 𝑥(𝛼)

𝛼
− 𝐹 (𝑥) −𝑤 + 𝐹 (𝑥)⟩ = ⟨𝑥(𝛼) − 𝑥,

𝑥 − 𝑥(𝛼)
𝛼

−𝑤⟩.

By making use of the Cauchy–Schwarz inequality, we further get
1
𝛼
‖𝑥 − 𝑥(𝛼)‖2 ≤ ⟨𝑤, 𝑥 − 𝑥(𝛼)⟩ ≤ ‖𝑤‖‖𝑥 − 𝑥(𝛼)‖.

So, we conclude that either 𝑥 − 𝑥(𝛼) = 0 or ‖𝑥 − 𝑥(𝛼)‖∕𝛼 ≤ ‖𝑤‖.
Finally, we refer to [1,19] for proofs of (A.4) and (A.5) respectively. □

Below, we give a well-known result.

Lemma A3. Consider any maximal monotone operator 𝑇 ∶  ⇉ . Assume that the sequence {𝑤𝑘} in  converges weakly to 𝑤, and
the sequence {𝑠𝑘} on dom𝑇 converges strongly to 𝑠. If 𝑇 (𝑤𝑘) ∋ 𝑠𝑘 for all 𝑘, then the relation 𝑇 (𝑤) ∋ 𝑠 must hold.
105

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong

L
𝜇

w

P

C

y

L

h

For a short proof of Lemma A3, we refer to [32] and the references cited therein.

emma A4. Assume that 𝐹 ∶ →  is continuous and monotone and 𝐴 ∶ ⇉  is maximal monotone. If 𝐹 and 𝐴 are further
𝐹 -monotone and 𝜇𝐴-monotone, respectively, and

𝐴(𝑥̄) ∋ 𝛼−1(𝑥 − 𝑥̄) − 𝐹 (𝑥) −𝑄∗𝑢, (A.6)

𝐴(𝑥∗) ∋ −𝐹 (𝑥∗) −𝑄∗𝑢∗, (A.7)

here 𝛼 > 0, then the following inequality holds

⟨𝑥 − 𝑥∗, 𝛼−1(𝑥 − 𝑥̄) − (𝐹 (𝑥) − 𝐹 (𝑥̄))⟩ − ⟨𝑄(𝑥̄ − 𝑥∗), 𝑢 − 𝑢∗⟩

≥ ⟨𝑥 − 𝑥̄, 𝛼−1(𝑥 − 𝑥̄) − (𝐹 (𝑥) − 𝐹 (𝑥̄))⟩ + (𝜇𝐹 + 𝜇𝐴)‖𝑥̄ − 𝑥∗‖2.

roof. In view of (A.6) and (A.7) and 𝐴’s 𝜇𝐴-monotonicity, we get

⟨𝑥̄ − 𝑥∗, 𝛼−1(𝑥 − 𝑥̄) − (𝐹 (𝑥) − 𝐹 (𝑥∗)) −𝑄∗(𝑢 − 𝑢∗)⟩ ≥ 𝜇𝐴‖𝑥̄ − 𝑥∗‖2.

ombining this with 𝐹 ’s 𝜇𝐹 -monotonicity, i.e.,

⟨𝑥̄ − 𝑥∗, 𝐹 (𝑥̄) − 𝐹 (𝑥∗)⟩ ≥ 𝜇𝐹 ‖𝑥̄ − 𝑥∗‖2

ields the desired result. □

emma A5. Let 𝑄 ∶  →  be nonzero, bounded and linear operator, and let 𝛼 > 0, 𝑡 ∈ . If 4𝛼 > 𝑡2𝛽‖𝑄‖

2, then the following

⟨𝑥, 𝛼𝑥⟩ + ⟨𝑢, 𝛽𝑢⟩ − 𝑡 ⟨𝑄𝑥, 𝛽𝑢⟩ ≥ 𝜑(𝛼, 𝛽, 𝑡𝑄)
(

‖𝑥‖2 + ‖𝑢‖2
)

olds for all 𝑥 ∈  and all 𝑢 ∈ , where

𝜑(𝛼, 𝛽, 𝑡𝑄) = 1
2

(

𝛼 + 𝛽 −
√

(𝛼 − 𝛽)2 + 𝑡2𝛽2‖𝑄‖

2
)

.

To our best knowledge, Lemma A5 or its equivalent version was given in [15, Sect. 3] and [24, Lemma 5.1]. Very recently, such
a nice result was used in [10] and generalized in the author’s 2017 manuscript of [8].

References

[1] H. Brézis, Opérateurs Maximaux Monotones, North-Holland, Amsterdam, 1973.
[2] L. Condat, A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms, J. Optim. Theory Appl.

158 (2) (2013) 460–479.
[3] S. Dafermos, Traffic equilibrium and variational inequalities, Transp. Sci. 14 (1980) 42–54.
[4] Y.D. Dong, Splitting Methods for Monotone Inclusions, (PhD dissertation), Nanjing University, 2003.
[5] Y.D. Dong, A variable metric proximal-descent algorithm for monotone operators, J. Appl. Math. Comput. 38 (2012) 505–521.
[6] Y.D. Dong, Douglas-Rachford splitting method for semi-definite programming, J. Appl. Math. Comput. 51 (2016) 569–591.
[7] Y.D. Dong, Weak convergence of an extended splitting method for monotone inclusions, J. Global Optim. 79 (1) (2021) 257–277.
[8] Y.D. Dong, A new splitting method for systems of monotone inclusions in Hilbert spaces, Math. Comput. Simulation 203 (2023) 518–537.
[9] Y.D. Dong, A. Fischer, A family of operator splitting methods revisited, Nonlinear Anal. 72 (2010) 4307–4315.

[10] Y.D. Dong, X.H. Yu, A new splitting method for monotone inclusions of three operators, Calcolo 56 (1) (2019) Art. 3.
[11] Y.D. Dong, X. Zhu, An inertial splitting method for monotone inclusions of three operators, Int. J. Math. Stat. Oper. Res. 2 (1) (2022) 43–60.
[12] J. Eckstein, A simplified form of block-iterative operator splitting and an asynchronous algorithm resembling the multi-block alternating direction method

of multipliers, J. Optim. Theory Appl. 173 (1) (2017) 155–182.
[13] J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal algorithm for maximal monotone operators, Math. Program. 55

(1992) 293–318.
[14] J. Eckstein, M.C. Ferris, Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control, Inf. J.

Comput. 10 (1998) 218–235.
[15] J. Eckstein, B.F. Svaiter, A family of projective splitting methods for the sum of two maximal monotone operators, Math. Program. 111 (2008) 173–199.
[16] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991) 403–419.
[17] B.S. He, A class of projection and contraction methods for monotone variational inequalities, Appl. Math. Optim. 35 (1997) 69–76.
[18] H.J. He, D.R. Han, A distributed douglas-rachford splitting method for multi-block convex minimization problems, Adv. Comput. Math. 42 (1) (2016)

27–53.
[19] Y.Y. Huang, Y.D. Dong, New properties of forward–backward splitting and a practical proximal-descent algorithm, Appl. Math. Comput. 237 (2014) 60–68.
[20] A. Irschara, C. Zach, M. Klopschitz, H. Bischof, Large-scale, dense city reconstruction from user-contributed photos, Comput. Vis. Image Und. 116 (2012)

2–15.
[21] O.S. Iyiola, C.D. Enyi, Y. Shehu, Reflected three-operator splitting method for monotone inclusion problem, Optim. Methods Softw. 37 (4) (2022) 1527–1565.
[22] P.R. Johnstone, J. Eckstein, Single-forward-step projective splitting: exploiting cocoercivity, Comput. Optim. Appl. 78 (2021) 125–166.
[23] P.R. Johnstone, J. Eckstein, Projective splitting with forward steps, Math. Program. 191 (2022) 631–670.
[24] P. Latafat, P. Patrinos, Asymmetric forward–backward-adjoint splitting for solving monotone inclusions involving three operators, Comput. Optim. Appl.

68 (1) (2017) 57–93.
[25] P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16 (1979) 964–979.
[26] B. Martinet, Regularisation d’inéquations variationelles par approximations successives, Rev. Fr. d’Informatique Recherche Opér. 4 (1970) 154–158.
[27] M.A. Noor, Mixed quasi variational inequalities, Appl. Math. Comput. 146 (2003) 553–578.
106

[28] T. Pennanen, Dualization of generalized equations of maximal monotone type, SIAM J. Optim. 10 (2000) 809–835.

http://refhub.elsevier.com/S0378-4754(24)00104-6/sb1
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb2
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb2
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb2
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb3
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb4
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb5
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb6
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb7
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb8
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb9
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb10
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb11
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb12
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb12
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb12
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb13
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb13
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb13
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb14
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb14
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb14
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb15
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb16
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb17
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb18
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb18
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb18
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb19
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb20
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb20
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb20
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb21
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb22
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb23
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb24
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb24
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb24
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb25
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb26
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb27
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb28

Mathematics and Computers in Simulation 223 (2024) 86–107Y. Dong
[29] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877–898.
[30] M.V. Solodov, P. Tseng, Modified projection-type methods for monotone variational inequalities, SIAM J. Control Optim. 34 (1996) 1814–1830.
[31] D.F. Sun, A class of iterative methods for solving nonlinear projection equations, J. Optim. Theory Appl. 91 (1) (1996) 123–140.
[32] P. Tseng, A modified forward–backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2) (2000) 431–446.
[33] B.C. Vu, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput. Math. 38 (3) (2013) 667–681.
[34] D. Wicht, M. Schneider, T. Böhlke, An efficient solution scheme for small-strain crystal-elasto-viscoplasticity in a dual framework, Comput. Methods Appl.

Mech. Engrg. 358 (2020) 112611.
[35] X. Zhu, Inertial Splitting Methods for Monotone Inclusions of Three Operators (Thesis), Zhengzhou University, 2020.
107

http://refhub.elsevier.com/S0378-4754(24)00104-6/sb29
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb30
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb31
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb32
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb33
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb34
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb34
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb34
http://refhub.elsevier.com/S0378-4754(24)00104-6/sb35

	Extended splitting methods for systems of three-operator monotone inclusions with continuous operators
	Introduction
	Methods
	Fi is Lipschitz continuous
	Fi is uniformly continuous

	Weak convergence in Lipschitz continuity case
	Weak convergence in uniform continuity case
	The dual-first version of Algorithm 2.1
	Applications to convex minimization
	Implementation details
	How to choose beta
	How to adapt Q
	How to solve subproblem
	How to deal with step in Algorithm 2.2

	Rudimentary experiments
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A
	References

